Security Function Inverses

Consider a bijective function $f: X \rightarrow Y$.
Define another function $g: Y \rightarrow X$ so that for $x \in X$ and $y \in Y$ if $f(x)=y$ then $g(y)=x$.
Now, the function g is said to be the inverse function of f and is denoted as $g=f^{-1}$.
In this task, you'll be given an integer n and a bijective function $f: X \rightarrow X$ where $X=\{1,2,3, \ldots, n\}$

Output the inverse of f.

Input Format

There are 2 lines in the input.
The first line contains a single positive integer n.
The second line contains n space separated integers, the values of $f(1), f(2), f(3), \ldots, f(n)$, respectively.

Constraints

$1 \leq n \leq 20$

Output Format

Output n lines. The $i^{\text {th }}$ line should contain the value of $f^{-1}(i)$.

Sample Input\#00

```
3
123
```


Sample Output\#00

```
1
2
3
```


Sample Input\#01

```
3
2 3 1
```


Sample Output\#01

Explanation

First sample :-
Basically, this is the function $f(x)=x$. Hence, it's the inverse of itself.
Second Sample :-
Here you can see that

$$
\begin{aligned}
& f(1)=2 \\
& f(2)=3 \\
& f(3)=1
\end{aligned}
$$

hence $f^{-1}(1)$ is 3
$f^{-1}(2)$ is 1
$f^{-1}(3)$ is 2
One way to confirm is $f\left(f^{-1}(x)\right)=x$.

