Consider a function $f: X \rightarrow X$ where X is any set, and f is a bijection.
Now, if $f=f^{-1}$ then f is called an involution. In other words, a function f is called an involution if $f(f(x))=x$

In this task you're given a permutation $f:\{1,2,3, \ldots, n\} \rightarrow\{1,2,3, \ldots, n\}$.
Determine whether f is an involution or not.

Constraints

$1 \leq n \leq 20$

Input Format

There are 2 lines in the input.
The first line contains a single positive integer n.
The second line contains n space separated integers, the values of $f(1), f(2), f(3), \ldots, f(n)$, respectively.

Output Format

Output "YES" if f is an involution. Otherwise, output "NO".

Sample Input

2
21

Sample Output

Explanation

Since, $f(1)=2$ and $f(2)=1, f^{-1}(1)=2$ and $f^{-1}(2)=1$.
Hence, f is an involution.

