Security
 Permutations

Consider a function $f: X \rightarrow X$ where X is any set.
If f is a bijection, then f is a permutation function of X. There is nothing special about the set X. It can be replaced by the set $\{1,2,3, \ldots, n\}$ where $n=|X|$.

Consider a permutation f given by $(2,3,1)$. This means that $f(1)=2, f(2)=3$ and $f(3)=1$.
In this task, you're given a permutation $f:\{1,2,3, \ldots, n\} \rightarrow\{1,2,3, \ldots, n\}$.
Output $f(f(x))$ for all $x \in\{1,2,3, \ldots, n\}$.

Constraints

$1 \leq n \leq 20$

Input Format

There are 2 lines in the input.
The first line contains a single positive integer n.
The second line contains n space separated integers, the values of $f(1), f(2), f(3), \ldots, f(n)$, respectively.

Output Format

On separate lines, output the values of $f(f(1)), f(f(2)), f(f(3)), \ldots, f(f(n))$, respectively.
Sample Input

```
3
2 3 1
```


Sample Output

3
1
2

Explanation

$f(f(1))=f(2)=3$ and so on.

