An AVL tree (Georgy Adelson-Velsky and Landis' tree, named after the inventors) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property.

We define balance factor for each node as :
balanceFactor $=$ height(left subtree) - height(right subtree)

The balance factor of any node of an AVL tree is in the integer range $[-1,+1]$. If after any modification in the tree, the balance factor becomes less than -1 or greater than +1 , the subtree rooted at this node is unbalanced, and a rotation is needed.

(https://en.wikipedia.org/wiki/AVL_tree)
You are given a pointer to the root of an AVL tree. You need to insert a value into this tree and perform the necessary rotations to ensure that it remains balanced.

Input Format

You are given a function,

```
node *insert(node * root,int new val)
{
```

\}
'node' is defined as :

```
struct node
{
int val; //value
struct node* left; //left child
struct node* right; //right child
int ht; //height of the node
} node;
```

You only need to complete the function.
Note: All the values in the tree will be distinct. Height of a Null node is -1 and the height of the leaf node is 0 .

Output Format

Insert the new value into the tree and return a pointer to the root of the tree. Ensure that the tree remains balanced.

Sample Input

3
11
24
\}
5

The value to be inserted is 6 .

Sample Output

3
1
46

Explanation

After inserting 6 in the tree. the tree becomes:

```
3 (Balance Factor = -2)
```

```
(Balance Factor = -2)
    5 (Balance Factor = -1)
    \
    6 (Balance Factor = 0)
```

Balance Factor of nodes 3 and 4 is no longer in the range $[-1,1]$. We need to perform a rotation to balance the tree. This is the right right case. We perform a single rotation to balance the tree.

After performing the rotation, the tree becomes :

```
    (Balance Factor = -1)
(Balance Factor = 0) 2 5 (Balance Factor = 0)
    (Balance Factor = 0)4 6 (Balance Factor = 0)
```

