
1/4

Self Balancing Tree

An AVL tree (Georgy Adelson-Velsky and Landis' tree, named after the inventors) is a self-balancing

binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most

one; if at any time they differ by more than one, rebalancing is done to restore this property.

We define balance factor for each node as :

balanceFactor = height(left subtree) - height(right subtree)

The balance factor of any node of an AVL tree is in the integer range [-1,+1]. If after any modification in

the tree, the balance factor becomes less than −1 or greater than +1, the subtree rooted at this node is

unbalanced, and a rotation is needed.

2/4

(https://en.wikipedia.org/wiki/AVL_tree)

You are given a pointer to the root of an AVL tree. You need to insert a value into this tree and perform

the necessary rotations to ensure that it remains balanced.

https://en.wikipedia.org/wiki/AVL_tree

3/4

Input Format

You are given a function,

node *insert(node * root,int new_val)

{

}

'node' is defined as :

struct node

{

int val; //value

struct node* left; //left child

struct node* right; //right child

int ht; //height of the node

} node;

You only need to complete the function.

Note: All the values in the tree will be distinct. Height of a Null node is -1 and the height of the leaf node

is 0.

Output Format

Insert the new value into the tree and return a pointer to the root of the tree. Ensure that the tree

remains balanced.

Sample Input

 3

 / \

 2 4

 \

 5

The value to be inserted is 6.

Sample Output

 3

 / \

 2 5

 / \

 4 6

Explanation

After inserting 6 in the tree. the tree becomes:

 3 (Balance Factor = -2)

 / \

4/4

 2 4 (Balance Factor = -2)

 \

 5 (Balance Factor = -1)

 \

 6 (Balance Factor = 0)

Balance Factor of nodes 3 and 4 is no longer in the range [-1,1]. We need to perform a rotation to

balance the tree. This is the right right case. We perform a single rotation to balance the tree.

After performing the rotation, the tree becomes :

 3 (Balance Factor = -1)

 / \

 (Balance Factor = 0) 2 5 (Balance Factor = 0)

 / \

 (Balance Factor = 0)4 6 (Balance Factor = 0)

