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Self Balancing Tree

An AVL tree (Georgy Adelson-Velsky and Landis' tree, named after the inventors) is a self-balancing

binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most

one; if at any time they differ by more than one, rebalancing is done to restore this property.

We define balance factor for each node as :

balanceFactor = height(left subtree) - height(right subtree)

The balance factor of any node of an AVL tree is in the integer range [-1,+1]. If after any modification in

the tree, the balance factor becomes less than −1 or greater than +1, the subtree rooted at this node is

unbalanced, and a rotation is needed.
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(https://en.wikipedia.org/wiki/AVL_tree)

You are given a pointer to the root of an AVL tree. You need to insert a value into this tree and perform

the necessary rotations to ensure that it remains balanced.

https://en.wikipedia.org/wiki/AVL_tree
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Input Format

You are given a function,

node *insert(node * root,int new_val)

{

}

'node' is defined as :

struct node

{

int val;            //value

struct node* left;  //left child

struct node* right; //right child

int ht;             //height of the node

} node;

You only need to complete the function.

Note: All the values in the tree will be distinct. Height of a Null node is -1 and the height of the leaf node

is 0.

Output Format

Insert the new value into the tree and return a pointer to the root of the tree. Ensure that the tree

remains balanced.

Sample Input

    3

  /  \

 2    4

       \

        5

The value to be inserted is 6.

Sample Output

    3

  /  \

 2    5

     / \

    4   6

Explanation

After inserting 6 in the tree. the tree becomes:

    3 (Balance Factor = -2)

  /  \
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 2    4 (Balance Factor = -2)

       \

        5 (Balance Factor = -1)

         \

          6 (Balance Factor = 0)

Balance Factor of nodes 3 and 4 is no longer in the range [-1,1]. We need to perform a rotation to

balance the tree. This is the right right case. We perform a single rotation to balance the tree.

After performing the rotation, the tree becomes :

                              3 (Balance Factor = -1)

                            /   \

      (Balance Factor = 0) 2     5 (Balance Factor = 0)

                                / \

           (Balance Factor = 0)4   6 (Balance Factor = 0)


