Treeland is a country with n cities and $n-1$ roads. There is exactly one path between any two cities.
The ruler of Treeland wants to implement a self-driving bus system and asks tree-loving Alex to plan the bus routes. Alex decides that each route must contain a subset of connected cities; a subset of cities is connected if the following two conditions are true:

1. There is a path between every pair of cities which belongs to the subset.
2. Every city in the path must belong to the subset.

In the figure above, $\{2,3,4,5\}$ is a connected subset, but $\{6,7,9\}$ is not (for the second condition to be true, 8 would need to be part of the subset).

Each self-driving bus will operate within a connected segment of Treeland. A connected segment $[L, R]$ where $1 \leq L \leq R \leq n$ is defined by the connected subset of cities $S=\{x \mid x \in Z$ and $L \leq x \leq R\}$. In the figure above, $[2,5]$ is a connected segment that represents the subset $\{2,3,4,5\}$. Note that a single city can be a segment too.

Help Alex to find number of connected segments in Treeland.

Input Format

The first line contains a single positive integer, n. The $n-1$ subsequent lines each contain two positive space-separated integers, a_{i} and b_{i}, describe an edge connecting two nodes in tree T.

Constraints

- $1 \leq n \leq 2 \times 10^{5}$
- $1 \leq a_{i}, b_{i} \leq n$

Subtasks

- For 25% score: $1 \leq n \leq 2 \times 10^{3}$
- For 50% score: $1 \leq n \leq 10^{4}$

Output Format

Print a single integer: the number of segments $[L, R]$, which are connected in tree T.
Sample Input

```
3
1 3
3
```


Sample Output

5

Explanation

The connected segments for our test case are: $[1,1],[2,2],[3,3],[2,3]$, and $[1,3]$. These segments can be represented by the respective subsets: $\{1\},\{2\},\{3\},\{2,3\}$, and $\{1,2,3\}$.

Note: $[1,2]$ is not a connected segment. It represents the subset $\{1,2\}$ and the path between 1 and 2 goes through 3 which is not a member of the subset.

