Separate the Numbers

A numeric string, s, is beautiful if it can be split into a sequence of two or more positive integers, $a[1], a[2], \ldots, a[n]$, satisfying the following conditions:

1. $a[i]-a[i-1]=1$ for any $1<i \leq n$ (i.e., each element in the sequence is 1 more than the previous element).
2. No $a[i]$ contains a leading zero. For example, we can split $s=10203$ into the sequence $\{1,02,03\}$, but it is not beautiful because 02 and 03 have leading zeroes.
3. The contents of the sequence cannot be rearranged. For example, we can split $s=312$ into the sequence $\{3,1,2\}$, but it is not beautiful because it breaks our first constraint (i.e., $1-3 \neq 1$).

The diagram below depicts some beautiful strings:

Perform q queries where each query consists of some integer string s. For each query, print whether or not the string is beautiful on a new line. If it is beautiful, print YES x , where x is the first number of the increasing sequence. If there are multiple such values of x, choose the smallest. Otherwise, print No .

Function Description

Complete the separateNumbers function in the editor below.
separateNumbers has the following parameter:

- s: an integer value represented as a string

Prints

- string: Print a string as described above. Return nothing.

Input Format

The first line contains an integer q, the number of strings to evaluate.
Each of the next q lines contains an integer string s to query.

Constraints

- $1 \leq q \leq 10$
- $1 \leq|s| \leq 32$
- $s[i] \in[0-9]$

Sample Input 0

```
7
1234
91011
99100
101103
010203
13
1
```


Sample Output 0

```
    YES 1
    YES 9
    YES 99
    NO
    NO
    NO
    NO
```


Explanation 0

The first three numbers are beautiful (see the diagram above). The remaining numbers are not beautiful:

- For $s=101103$, all possible splits violate the first and/or second conditions.
- For $s=010203$, it starts with a zero so all possible splits violate the second condition.
- For $s=13$, the only possible split is $\{1,3\}$, which violates the first condition.
- For $s=1$, there are no possible splits because s only has one digit.

Sample Input 1

4
99910001001
7891011
9899100
999100010001

Sample Output 1

```
YES 999
YES }
YES 98
NO
```

