Shashank and List

HackerRank

Shashank is a newbie to mathematics, and he is very excited after knowing that a given I of cardinality N has $(2^{N} - 1)$ non-empty sublist. He writes down all the non-empty sublists for a given set A. For each sublist, he calculates sublist_sum, which is the sum of elements and denotes them by S₁, S₂, S₃, ..., S_(2^N-1).

He then defines a special_sum, P.

 $P = 2^{S_1} + 2^{S_2} + 2^{S_3} \dots + 2^{S_{(2^{N-1})}}$ and reports P % (10⁹ + 7).

Input Format

The first line contains an integer *N*, i.e., the size of list *A*. The next line will contain *N* integers, each representing an element of list *A*.

Output Format

Print special_sum, P modulo $(10^9 + 7)$.

Constraints

 $1 \le N \le 10^5$ $0 \le a_i \le 10^{10}$, where $i \in [1 ... N]$

Sample Input

3 1 1 2

Sample Output

44

Explanation

For given list, sublist and calculations are given below

- 1. $\{1\}$ and $2^1 = 2$ 2. $\{1\}$ and $2^1 = 2$
- 3. $\{2\}$ and $2^2 = 4$
- 4. $\{1,1\}$ and $2^2 = 4$
- 5. $\{1,2\}$ and $2^3 = 8$
- 6. $\{1,2\}$ and $2^3 = 8$
- 7. $\{1,1,2\}$ and $2^4 = 16$
- So total sum will be 44.