Shashank and the Palindromic Strings

Shashank loves strings, but he loves palindromic strings the most. He has a list of n strings, $A=\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]$, where each string, a_{i}, consists of lowercase English alphabetic letters. Shashank wants to count the number of ways of choosing non-empty subsequences $s_{0}, s_{1}, s_{2}, \ldots, s_{n-1}$ such that the following conditions are satisfied:

1. s_{0} is a subsequence of string a_{0}, s_{1} is a subsequence of string a_{1}, s_{2} is a subsequence of string a_{2}, \ldots..., and s_{n-1} is a subsequence of string a_{n-1}.
2. $s_{0}+s_{1}+s_{2}+\ldots+s_{n-1}$ is a palindromic string, where + denotes the string concatenation operator.

You are given q queries where each query consists of some list, A. For each query, find and print the number of ways Shashank can choose n non-empty subsequences satisfying the criteria above, modulo $10^{9}+7$, on a new line.

Note: Two subsequences consisting of the same characters are considered to be different if their characters came from different indices in the original string.

Input Format

The first line contains a single integer, q, denoting the number of queries. The subsequent lines describe each query in the following format:

- The first line contains an integer, n, denoting the size of the list.
- Each line i of the n subsequent lines contains a non-empty string describing a_{i}.

Constraints

- $1 \leq q \leq 50$
- $1 \leq n \leq 50$
- $\sum_{i=0}^{n-1}\left|a_{i}\right| \leq 1000$ over a test case.

For 40% of the maximum score:

- $1 \leq n \leq 5$
- $\sum_{i=0}^{n-1}\left|a_{i}\right| \leq 250$ over a test case.

Output Format

For each query, print the number of ways of choosing non-empty subsequences, modulo $10^{9}+7$, on a new line.

Sample Input 0

Sample Output 0

5
0
9

Explanation 0

The first two queries are explained below:

1. We can choose the following five subsequences:
2. $s_{0}=$ "a", $s_{1}=" \mathrm{~b}$ ", $s_{2}=$ "a", where s_{0} is the first character of a_{0} and s_{2} is the first character of a_{2}.
3. $s_{0}=" \mathrm{a}$ ", $s_{1}=$ "b", $s_{2}=$ "a", where s_{0} is the second character of a_{0} and s_{2} is the second character of a_{2}.
4. $s_{0}=" \mathrm{a}$ ", $s_{1}=" \mathrm{~b}$ ", $s_{2}=" \mathrm{a}$ ", where s_{0} is the first character of a_{0} and s_{2} is the second character of a_{2}.
5. $s_{0}=" \mathrm{a}$ ", $s_{1}=" \mathrm{~b}$ ", $s_{2}=$ "a", where s_{0} is the second character of a_{0} and s_{2} is the first character of a_{2}.
6. $s_{0}=" \mathrm{aa} ", s_{1}=" \mathrm{~b} ", s_{2}=" \mathrm{aa} "$

Thus, we print the result of $5 \bmod \left(10^{9}+7\right)=5$ on a new line.
2. There is no way to choose non-empty subsequences such that their concatenation results in a palindrome, as each string contains unique characters. Thus, we print 0 on a new line.

