Two strings are anagrams of each other if the letters of one string can be rearranged to form the other string. Given a string, find the number of pairs of substrings of the string that are anagrams of each other.

Example

$s=m o m$
The list of all anagrammatic pairs is $[m, m],[m o, o m]$ at positions $[[0],[2]],[[0,1],[1,2]]$ respectively.

Function Description

Complete the function sherlockAndAnagrams in the editor below.
sherlockAndAnagrams has the following parameter(s):

- string s: a string

Returns

- int: the number of unordered anagrammatic pairs of substrings in s

Input Format

The first line contains an integer q, the number of queries.
Each of the next q lines contains a string s to analyze.

Constraints

$1 \leq q \leq 10$
$2 \leq$ length of $s \leq 100$
s contains only lowercase letters in the range ascii[a-z].

Sample Input 0

```
2
```

abba
abcd

Sample Output 0

Explanation 0

The list of all anagrammatic pairs is $[a, a],[a b, b a],[b, b]$ and $[a b b, b b a]$ at positions $[[0],[3]],[[0,1],[2,3]],[[1],[2]]$ and $[[0,1,2],[1,2,3]]$ respectively.

Sample Input 1

```
2
ifailuhkqq
kkkk
```


Sample Output 1

10

Explanation 1

For the first query, we have anagram pairs $[i, i],[q, q]$ and $[i f a, f a i]$ at positions $[[0],[3]],[[8],[9]]$ and [[0, 1, 2], [1, 2, 3]] respectively.

For the second query:
There are 6 anagrams of the form $[k, k]$ at positions [[0], [1]], [[0], [2]], [[0], [3]], [[1], [2]], [[1], [3]] and [[2], [3]].
There are 3 anagrams of the form $[k k, k k]$ at positions $[[0,1],[1,2]],[[0,1],[2,3]]$ and $[[1,2],[2,3]]$.
There is 1 anagram of the form $[k k k, k k k]$ at position $[[0,1,2],[1,2,3]]$.

Sample Input 2

```
1
    cdcd
```


Sample Output 2

Explanation 2

There are two anagrammatic pairs of length $1:[c, c]$ and $[d, d]$.
There are three anagrammatic pairs of length 2: $[c d, d c],[c d, c d],[d c, c d]$ at positions $[[0,1],[1,2]],[[0,1],[2,3]],[[1,2],[2,3]]$ respectively.

