Sherlock is stuck while solving a problem: Given an array $A=\left\{a_{1}, a_{2}, \cdots, a_{N}\right\}$, he wants to know if there exists a subset $B$ of this array which follows these statements:

- $B$ is a non-empty subset.
- There exists no integer $x(x>1)$ which divides all elements of $B$.
- There are no elements of $B$ which are equal to another.


## Input Format

The first line of input contains an integer, $T$, representing the number of test cases. Then $T$ test cases follow.
Each test case consists of two lines. The first line contains an integer, $N$, representing the size of array $A$ . In the second line there are $N$ space-separated integers, $a_{1}, a_{2}, \ldots, a_{n}$, representing the elements of array $A$.

## Constraints

$1 \leq T \leq 10$
$1 \leq N \leq 100$
$1 \leq a_{i} \leq 10^{5} \forall 1 \leq i \leq N$

## Output Format

Print YES if such a subset exists; otherwise, print No.

## Sample Input

$\square$

## Sample Output

```
    YES
NO
NO
```


## Explanation

In the first test case, $\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}$ and $\{1,2,3\}$ are all the possible non-empty subsets, of which the first and the last four satisfy the given condition.

For the second test case, all possible subsets are $\{2\},\{4\},\{2,4\}$. For all of these subsets, $x=2$ divides each element. Therefore, no non-empty subset exists which satisfies the given condition.

For the third test case, the following subsets exist: $S_{1}=\{5\}, S_{2}=\{5,5\}$, and $S_{3}=\{5,5,5\}$. Because the single element in the first subset is divisible by 5 and the other two subsets have elements that are equal to another, there is no subset that satisfies every condition.

