Sherlock and MiniMax

Watson gives Sherlock an array of integers. Given the endpoints of an integer range, for all M in that inclusive range, determine the minimum ($\operatorname{abs}(\operatorname{arr}[i]-M)$ for all $1 \leq i \leq|\operatorname{arr}|)$). Once that has been determined for all integers in the range, return the M which generated the maximum of those values. If there are multiple M 's that result in that value, return the lowest one.

For example, your array $\operatorname{arr}=[3,5,7,9]$ and your range is from $p=6$ to $q=8$ inclusive.

M	$\|\operatorname{arr}[1]-\mathrm{M}\|$	$\|\operatorname{arr}[2]-\mathrm{M}\|$	$\|\operatorname{arr}[3]-\mathrm{M}\|$	$\|\operatorname{arr}[4]-\mathrm{M}\|$	Min
6	3	2	0	3	1
7	4	3	1	0	1
8	5		1		

We look at the Min column and see the maximum of those three values is 1 . Two M 's result in that answer so we choose the lower value, 6 .

Function Description

Complete the sherlockAndMinimax function in the editor below. It should return an integer as described.
sherlockAndMinimax has the following parameters:

- arr: an array of integers
- p : an integer that represents the lowest value of the range for M
- q : an integer that represents the highest value of the range for M

Input Format

The first line contains an integer n, the number of elements in arr.
The next line contains n space-separated integers $\operatorname{arr}[i]$.
The third line contains two space-separated integers p and q, the inclusive endpoints for the range of M.

Constraints

$1 \leq n \leq 10^{2}$
$1 \leq \operatorname{arr}[i] \leq 10^{9}$
$1 \leq p \leq q \leq 10^{9}$

Output Format

Print the value of M on a line.

Sample Input

```
3
5 8 14
49
```


Sample Output

4

Explanation

arr $=[5,8,14]$, range $=[4-9]$

M	$\|\operatorname{arr}[1]-\mathrm{M}\|$	$\|\operatorname{arr}[2]-\mathrm{M}\|$	$\|\operatorname{arr}[3]-\mathrm{M}\|$	Min
4	1	4	10	1
5	0	3	9	0
6	1	2	8	1
7	2	1	7	1
8	3	0	6	0
9	4	1	5	1

For $M=4,6,7$, or 9 , the result is 1 . Since we have to output the smallest of the multiple solutions, we print 4.

