Sherlock is given an array of N integers ($A_{0}, A_{1} \ldots A_{N-1}$ by Watson. Now Watson asks Sherlock how many different pairs of indices i and j exist such that i is not equal to j but A_{i} is equal to A_{j}.

That is, Sherlock has to count the total number of pairs of indices (i, j) where $A_{i}=A_{j}$ AND $i \neq j$.

Input Format

The first line contains T, the number of test cases. T test cases follow.
Each test case consists of two lines; the first line contains an integer N, the size of array, while the next line contains N space separated integers.

Output Format

For each test case, print the required answer on a different line.

Constraints

$1 \leq T \leq 10$
$1 \leq N \leq 10^{5}$
$1 \leq A[i] \leq 10^{6}$

Sample input

```
2
3
1 2 3
3
1 2
```


Sample output

0
2

Explanation

In the first test case, no two pair of indices exist which satisfy the given condition.
In the second test case as $A[0]=A[1]=1$, the pairs of indices $(0,1)$ and $(1,0)$ satisfy the given condition.

