Sherlock and Squares

Watson likes to challenge Sherlock's math ability. He will provide a starting and ending value that describe a range of integers, inclusive of the endpoints. Sherlock must determine the number of square integers within that range.

Note: A square integer is an integer which is the square of an integer, e.g. $1,4,9,16,25$.

Example

$a=24$
$b=49$
There are three square integers in the range: 25,36 and 49 . Return 3.

Function Description

Complete the squares function in the editor below. It should return an integer representing the number of square integers in the inclusive range from a to b.
squares has the following parameter(s):

- int a: the lower range boundary
- int b : the upper range boundary

Returns

- int: the number of square integers in the range

Input Format

The first line contains q, the number of test cases.
Each of the next q lines contains two space-separated integers, a and b, the starting and ending integers in the ranges.

Constraints

$1 \leq q \leq 100$
$1 \leq a \leq b \leq 10^{9}$

Sample Input

```
2
3 9
17 24
```


Sample Output

Test Case \#00: In range $[3,9], 4$ and 9 are the two square integers.
Test Case \#01: In range [17, 24], there are no square integers.

