Sherlock considers a string to be valid if all characters of the string appear the same number of times. It is also valid if he can remove just 1 character at 1 index in the string, and the remaining characters will occur the same number of times. Given a string s, determine if it is valid. If so, return YES, otherwise return NO .

Example

$s=a b c$
This is a valid string because frequencies are $\{a: 1, b: 1, c: 1\}$.
$s=a b c c$
This is a valid string because we can remove one c and have 1 of each character in the remaining string.
$s=a b c c c$
This string is not valid as we can only remove 1 occurrence of c. That leaves character frequencies of $\{a: 1, b: 1, c: 2\}$.

Function Description

Complete the isValid function in the editor below.
isValid has the following parameter(s):

- string s: a string

Returns

- string: either YES or No

Input Format

A single string s.

Constraints

- $1 \leq|s| \leq 10^{5}$
- Each character $s[i] \in \operatorname{ascii}[a-z]$

Sample Input 0

```
a ab.bcd
```


Sample Output 0

Explanation 0

Given $s=$ "aabbcd", we would need to remove two characters, both c and $\mathrm{d} \rightarrow$ aabb or a and $\mathrm{b} \rightarrow$ abcd, to make it valid. We are limited to removing only one character, so s is invalid.

Sample Input 1

aab.bccddeefghi

Sample Output 1

NO

Explanation 1

Frequency counts for the letters are as follows:

```
\{'a': 2, 'b': 2, 'c': 2, 'd': 2, 'e': 2, 'f': 1, 'g': 1, 'h': 1, 'i': 1\}
```

There are two ways to make the valid string:

- Remove 4 characters with a frequency of 1 : \{fghi\}.
- Remove 5 characters of frequency 2 : \{abcde\}.

Neither of these is an option.

Sample Input 2

abcdefghhgfedecba

Sample Output 2

```
YES
```


Explanation 2

All characters occur twice except for e which occurs 3 times. We can delete one instance of e to have a valid string.

