Watson gave Sherlock a collection of arrays V. Here each V_{i} is an array of variable length. It is guaranteed that if you merge the arrays into one single array, you'll get an array, M, of n distinct integers in the range $[1, n]$.

Watson asks Sherlock to merge V into a sorted array. Sherlock is new to coding, but he accepts the challenge and writes the following algorithm:

- $M \leftarrow[]$ (an empty array).
- $k \leftarrow$ number of arrays in the collection V.
- While there is at least one non-empty array in V :
- $T \leftarrow[]$ (an empty array) and $i \leftarrow 1$.
- While $i \leq k$:
- If V_{i} is not empty:
- Remove the first element of V_{i} and push it to T.
- $i \leftarrow i+1$.
- While T is not empty:
- Remove the minimum element of T and push it to M.
- Return M as the output.

Let's see an example. Let V be $\{[3,5],[1],[2,4]\}$.

The image below demonstrates how Sherlock will do the merging according to the algorithm:

Step 1

Sherlock isn't sure if his algorithm is correct or not. He ran Watson's input, V, through his pseudocode algorithm to produce an output, M, that contains an array of n integers. However, Watson forgot the contents of V and only has Sherlock's M with him! Can you help Watson reverse-engineer M to get the original contents of V ?

Given m, find the number of different ways to create collection V such that it produces m when given to Sherlock's algorithm as input. As this number can be quite large, print it modulo $10^{9}+7$.

Notes:

- Two collections of arrays are different if one of the following is true:
- Their sizes are different.
- Their sizes are the same but at least one array is present in one collection but not in the other.
- Two arrays, A and B, are different if one of the following is true:
- Their sizes are different.
- Their sizes are the same, but there exists an index i such that $a_{i} \neq b_{i}$.

Input Format

The first line contains an integer, n, denoting the size of array M.
The second line contains n space-separated integers describing the respective values of $m_{0}, m_{1}, \ldots, m_{n-1}$.

Constraints

- $1 \leq n \leq 1200$
- $1 \leq m_{i} \leq n$

Output Format

Print the number of different ways to create collection V, modulo $10^{9}+7$.

Sample Input 0

Sample Output 0

4

Explanation 0

There are four distinct possible collections:

1. $V=\{[1,2,3]\}$
2. $V=\{[1],[2],[3]\}$
3. $V=\{[1,3],[2]\}$
4. $V=\{[1],[2,3]\}$.

Thus, we print the result of $4 \bmod \left(10^{9}+7\right)=4$ as our answer.

Sample Input 1

21

Sample Output 1

1

Explanation 1

The only distinct possible collection is $V=\{[2,1]\}$, so we print the result of $1 \bmod \left(10^{9}+7\right)=1$ as our answer.

