Find the Path

You are given a table, a, with n rows and m columns. The top-left corner of the table has coordinates $(0,0)$, and the bottom-right corner has coordinates $(n-1, m-1)$. The $i^{\text {th }}$ cell contains integer $a_{i, j}$.

A path in the table is a sequence of cells $\left(r_{1}, c_{1}\right),\left(r_{2}, c_{2}\right), \ldots,\left(r_{k}, c_{k}\right)$ such that for each $i \in\{1, \ldots, k-1\}$, cell $\left(r_{i}, c_{i}\right)$ and cell $\left(r_{i+1}, c_{i+1}\right)$ share a side.

The weight of the path $\left(r_{1}, c_{1}\right),\left(r_{2}, c_{2}\right), \ldots,\left(r_{k}, c_{k}\right)$ is defined by $\sum_{i=1}^{k} a_{r_{i}, c_{i}}$ where $a_{r_{i}, c_{i}}$ is the weight of the cell $\left(r_{i}, c_{i}\right)$.

You must answer q queries. In each query, you are given the coordinates of two cells, $\left(r_{1}, c_{1}\right)$ and $\left(r_{2}, c_{2}\right)$. You must find and print the minimum possible weight of a path connecting them.

Note: A cell can share sides with at most 4 other cells. A cell with coordinates (r, c) shares sides with $(r-1, c),(r+1, c),(r, c-1)$ and $(r, c+1)$.

Input Format

The first line contains 2 space-separated integers, n (the number of rows in a) and m (the number of columns in a), respectively.
Each of n subsequent lines contains m space-separated integers. The $j^{\text {th }}$ integer in the $i^{\text {th }}$ line denotes the value of $a_{i, j}$.
The next line contains a single integer, q, denoting the number of queries.
Each of the q subsequent lines describes a query in the form of 4 space-separated integers: r_{1}, c_{1}, r_{2}, and c_{2}, respectively.

Constraints

- $1 \leq n \leq 7$
- $1 \leq m \leq 5 \times 10^{3}$
- $0 \leq a_{i, j} \leq 3 \times 10^{3}$
- $1 \leq q \leq 3 \times 10^{4}$

For each query:

- $0 \leq r_{1}, r_{2}<n$
- $0 \leq c_{1}, c_{2}<m$

Output Format

On a new line for each query, print a single integer denoting the minimum possible weight of a path between $\left(r_{1}, c_{1}\right)$ and $\left(r_{2}, c_{2}\right)$.

Sample Input

```
9}9999
```

0000
024
1
3
1113

Sample Output

\square

Explanation

The input table looks like this:

The first two queries are explained below:

1. In the first query, we have to find the minimum possible weight of a path connecting $(0,0)$ and $(2,4)$. Here is one possible path:
$(0,0)$

The total weight of the path is $0+1+0+0+0+0+0=1$.
2. In the second query, we have to find the minimum possible weight of a path connecting $(0,3)$ and $(2,3)$. Here is one possible path:
$(0,0)$

0	0	0	0	0
1	9	9	9	1
0	0	0	0	0

The total weight of the path is $0+0+1+0+0=1$.

