Jimmy loves playing with strings. He thinks string A is similar to string B if the following conditions are satisfied:

- Both strings have the same length (i.e., $A=a_{0} a_{1} \ldots a_{n-1}$ and $B=b_{0} b_{1} \ldots b_{n-1}$).
- For each valid pair of indices, (i, j), in the strings, $\left[a_{i}=a_{j}\right.$ and $\left.b_{i}=b_{j}\right]$ or $\left[a_{i} \neq a_{j}\right.$ and $\left.b_{i} \neq b_{j}\right]$.

For example, string $a=$ "adba" and $b=$ "bcgb" are similar as for $i=0, j=3, a[0]==a[3]$ and $b[0]==b[3]$ and for all other i, j pairs $a[i] \neq a[j]$ as well as $b[i] \neq b[j]$.

He has a string, S, of size n and gives you q queries to answer where each query is in the form of a pair of integers $\left(l_{i}, r_{i}\right)$. For each substring $S\left[l_{i}, r_{i}\right]$, find the number of substrings $S[x, y]$ where substring $S\left[l_{i}, r_{i}\right]$ is similar to substring $S[x, y]$ and print this number on a new line.

Note: Substring $S[x, y]$ is the contiguous sequence of characters from index x to index y. For example, if $S=$ abcdefgh , then $S[3,6]=$ cdef.

Input Format

The first line contains two space-separated integers describing the respective values of n and q. The second line contains string S.
Each line i of the q subsequent lines contains two space-separated integers describing the respective values of l_{i} and r_{i} for query i.

Constraints

- $1 \leq n, q \leq 5 \times 10^{4}$
- $1 \leq L_{i} \leq R_{i} \leq n$
- $s_{i} \in\{a, b, c, d, e, f, g, h, i, j\}$

Output Format

For each query, print the number of similar substrings on a new line.

Sample Input

```
84
giggabaj
1 1
12
13
24
```


Sample Output

Explanation

We perform the following sequence of queries:

1. Strings with length 1 are all similar, so our answer is 8 .
2. gi, ig, ga, ab, ba, and aj are similar, so our answer is 6 .
3. gig and aba are similar, so our answer is 2 .
4. igg has no similar string, so our answer is 1 .
