You are given the equation $\tan \alpha=\frac{p}{q}$ and a positive integer, n. Calculate $\tan n \alpha$. There are T test cases.

Input Format

The first line contains T, the number of test cases.
The next T lines contain three space separated integers: p, q and n, respectively.

Constraints

$0 \leqslant p \leqslant 10^{9}$
$1 \leqslant q \leqslant 10^{9}$
$1 \leqslant n \leqslant 10^{9}$
$T \leqslant 10^{4}$

Output Format

If the result is defined, it is always a rational number. However, it can be very big.
Output the answer modulo $\left(10^{9}+7\right)$.
If the answer is $\frac{a}{b}$ and b is not divisible by $\left(10^{9}+7\right)$, there is a unique integer $0 \leqslant x<10^{9}+7$ where $a \equiv b x \bmod \left(10^{9}+7\right)$.
Output this integer, x.
It is guaranteed that b is not divisible by $\left(10^{9}+7\right)$ for all test cases.

Sample Input

```
2
2 1 2
567
```


Sample Output

666666670
237627959

Explanation

If $\tan \alpha=\frac{2}{1}$ then $\tan 2 \alpha=-\frac{4}{3}$ and $-4 \equiv 3 \times 666666670 \bmod \left(10^{9}+7\right)$.
So, the answer is 666666670 .

