You are given n triangles, specifically, their sides a_{i}, b_{i} and c_{i}. Print them in the same style but sorted by their areas from the smallest one to the largest one. It is guaranteed that all the areas are different.

The best way to calculate a area of a triangle with sides a, b and c is Heron's formula:
$S=\sqrt{p \times(p-a) \times(p-b) \times(p-c)}$ where $p=\frac{a+b+c}{2}$.

Input Format

The first line of each test file contains a single integer n. n lines follow with three space-separated integers, a_{i}, b_{i} and c_{i}.

Constraints

- $1 \leq n \leq 100$
- $1 \leq a_{i}, b_{i}, c_{i} \leq 70$
- $a_{i}+b_{i}>c_{i}, a_{i}+c_{i}>b_{i}$ and $b_{i}+c_{i}>a_{i}$

Output Format

Print exactly n lines. On each line print 3 space-separated integers, the a_{i}, b_{i} and c_{i} of the corresponding triangle.

Sample Input 0

```
3
7 24 25
5 12 13
345
```


Sample Output 0

```
3 4 5
5 12 13
7 24 25
```


Explanation 0

The square of the first triangle is 84 . The square of the second triangle is 30 . The square of the third triangle is 6 . So the sorted order is the reverse one.

