Consider an array $A=\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]$ of n integers. We perform q queries of the following type on A

- Sort all the elements in the subsegment $a_{l_{i}}, a_{l_{i}+1}, \ldots, a_{r_{i}}$.

Given A, can you find and print the value at index k (where $0 \leq k<n$) after performing q queries?

Input Format

The first line contains three positive space-separated integers describing the respective values of n (the number of integers in A), q (the number of queries), and k (an index in A).
The next line contains n space-separated integers describing the respective values of $a_{0}, a_{1}, \ldots, a_{n-1}$. Each line j of the q subsequent lines contain two space-separated integers describing the respective l_{j} and r_{j} values for query j.

Constraints

- $1 \leq n, q \leq 75000$
- $0 \leq k \leq n-1$
- $-10^{9} \leq a_{i} \leq 10^{9}$
- $0 \leq l_{i} \leq r_{i}<n$

Output Format

Print a single integer denoting the value of a_{k} after processing all q queries.

Sample Input 0

```
3 1 1
3 2 1
0 1
```


Sample Output 0

Explanation 0

$A=[3,2,1]$
There is only one query to perform. When we sort the subarray ranging from index 0 to index 1 , we get $A^{\prime}=[2,3,1]$. We then print the element at index 1 , which is 3 .

Sample Input 1

Sample Output 1

2

Explanation 1

$A=[4,3,2,1]$
There are $q=2$ queries:

1. When we sort the subarray ranging from index 0 to index 2 , we get $A^{\prime}=[2,3,4,1]$.
2. When we sort the subarray of A^{\prime} from index 1 to index 3 , we get $A^{\prime \prime}=[2,1,3,4]$. Having performed all of the queries, we print the element at index 0 , which is 2 .
