Special String Again

A string is said to be a special string if either of two conditions is met:

- All of the characters are the same, e.g. aaa.
- All characters except the middle one are the same, e.g. aadaa.

A special substring is any substring of a string which meets one of those criteria. Given a string, determine how many special substrings can be formed from it.

Example

$s=$ mnonopoo
s contains the following 12 special substrings: $\{\mathrm{m}, \mathrm{n}, \mathrm{o}, \mathrm{n}, \mathrm{o}, \mathrm{p}, \mathrm{o}, \mathrm{o}, \mathrm{non}$, ono, opo, oo$\}$.

Function Description

Complete the substrCount function in the editor below.
substrCount has the following parameter(s):

- int n : the length of string s
- string s: a string

Returns

- int: the number of special substrings

Input Format

The first line contains an integer, n, the length of s.
The second line contains the string s.

Constraints

$1 \leq n \leq 10^{6}$
Each character of the string is a lowercase English letter, ascii [a-z].
Sample Input 0

5
asasd

Sample Output 0

7

Explanation 0

The special palindromic substrings of $s=\operatorname{asasd}$ are $\{\mathrm{a}, \mathrm{s}, \mathrm{a}, \mathrm{s}, \mathrm{d}, \mathrm{asa}, \mathrm{sas}\}$

Sample Input 1

7
abcbaba

Sample Output 1

```
1 0
```


Explanation 1

The special palindromic substrings of $s=\mathrm{abcbaba}$ are $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{b}, \mathrm{a}, \mathrm{b}, \mathrm{a}, \mathrm{bcb}, \mathrm{bab}$, aba$\}$

Sample Input 2

4
aaaa

Sample Output 2

```
1 0
```


Explanation 2

The special palindromic substrings of $s=$ aaaa $\operatorname{are}\{\mathrm{a}, \mathrm{a}, \mathrm{a}, \mathrm{a}, \mathrm{aa}, \mathrm{aa}, \mathrm{aa}$, aaa, aaa, aaa\}

