Square-Ten Tree

The square-ten tree decomposition of an array is defined as follows:

- The lowest $\left(0^{t h}\right)$ level of the square-ten tree consists of single array elements in their natural order.
- The $k^{t h}$ level (starting from 1) of the square-ten tree consists of subsequent array subsegments of length $10^{2^{k-1}}$ in their natural order. Thus, the $1^{\text {st }}$ level contains subsegments of length $10^{2^{1-1}}=10$, the $2^{\text {nd }}$ level contains subsegments of length $10^{2^{2-1}}=100$, the $3^{\text {rd }}$ level contains subsegments of length $10^{2^{3-1}}=10000$, etc.

In other words, every $k^{t h}$ level (for every $k \geq 1$) of square-ten tree consists of array subsegments indexed as:

$$
\left[1,10^{2^{k-1}}\right],\left[10^{2^{k-1}}+1,2 \cdot 10^{2^{k-1}}\right], \ldots,\left[i \cdot 10^{2^{k-1}}+1,(i+1) \cdot 10^{2^{k-1}}\right], \ldots
$$

Level 0 consists of array subsegments indexed as $[1,1],[2,2], \ldots,[i, i], \ldots$.
The image below depicts the bottom-left corner (i.e., the first 128 array elements) of the table representing a square-ten tree. The levels are numbered from bottom to top:

Task

Given the borders of array subsegment $[L, R]$, find its decomposition into a minimal number of nodes of a square-ten tree. In other words, you must find a subsegment sequence $\left[l_{1}, r_{1}\right],\left[l_{2}, r_{2}\right], \ldots,\left[l_{m}, r_{m}\right]$ such as $l_{i+1}=r_{i}+1$ for every $1 \leq i<m, l_{1}=L, r_{m}=R$, where every $\left[l_{i}, r_{i}\right]$ belongs to any of the square-ten tree levels and m is minimal amongst all such variants.

Input Format

The first line contains a single integer denoting L.
The second line contains a single integer denoting R.

Constraints

- $1 \leq L \leq R \leq 10^{10^{6}}$
- The numbers in input do not contain leading zeroes.

Output Format

As soon as array indices are too large, you should find a sequence of m square-ten tree level numbers, $s_{1}, s_{2}, \ldots, s_{m}$, meaning that subsegment $\left[l_{i}, r_{i}\right]$ belongs to the $s_{i}^{t h}$ level of the square-ten tree.

Print this sequence in the following compressed format:

- On the first line, print the value of n (i.e., the compressed sequence block count).
- For each of the n subsequent lines, print 2 space-separated integers, t_{i} and $c_{i}\left(t_{i} \geq 0, c_{i} \geq 1\right)$, meaning that the number t_{i} appears consequently c_{i} times in sequence s. Blocks should be listed in the order they appear in the sequence. In other words, $s_{1}, s_{2}, \ldots, s_{c_{1}}$ should be equal to t_{1}, $s_{c_{1}+1}, s_{c_{1}+2}, \ldots, s_{c_{1}+c_{2}}$ should be equal to t_{2}, etc.

Thus $\sum_{i=1}^{n} c_{i}=m$ must be true and $t_{i} \neq t_{i+1}$ must be true for every $1 \leq i<n$. All numbers should be printed without leading zeroes.

Sample Input 0

Sample Output 0

```
1 1
```


Explanation 0

Segment $[1,10]$ belongs to level 1 of the square-ten tree.

