Viral Advertising

HackerLand Enterprise is adopting a new viral advertising strategy. When they launch a new product, they advertise it to exactly $\bf 5$ people on social media.

On the first day, half of those 5 people (i.e., $floor(\frac{5}{2})=2$) like the advertisement and each shares it with 3 of their friends. At the beginning of the second day, $floor(\frac{5}{2})\times 3=2\times 3=6$ people receive the advertisement.

Each day, $floor(\frac{recipients}{2})$ of the recipients like the advertisement and will share it with 3 friends on the following day. Assuming nobody receives the advertisement twice, determine how many people have liked the ad by the end of a given day, beginning with launch day as day 1.

Example

$$n=5$$
.

The progression is shown above. The cumulative number of likes on the $\mathbf{5}^{th}$ day is $\mathbf{24}$.

Function Description

Complete the *viralAdvertising* function in the editor below.

viralAdvertising has the following parameter(s):

• *int n:* the day number to report

Returns

int: the cumulative likes at that day

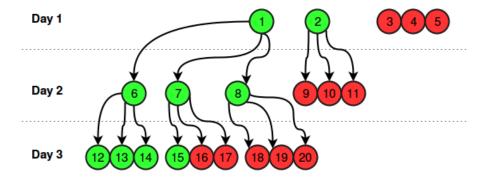
Input Format

A single integer, n, the day number.

Constraints

• $1 \le n \le 50$

Sample Input


3

Sample Output

9

Explanation

This example is depicted in the following diagram:

2 people liked the advertisement on the first day, 3 people liked the advertisement on the second day and 4 people liked the advertisement on the third day, so the answer is 2+3+4=9.