Let length (A) denote the count of digits of a number A in its decimal representation.
John is looking for new methods of determining which numbers are strange all day long.
All non-negative numbers of length 1 are strange. Further, a number X with length $(X) \geq 1$ can also be considered strange if and only if

- X is evenly divisible by length (X)
- the number $X /$ length (X) is recursively strange

Your task is to calculate how many strange numbers belong to an interval $[L, R]$.

Input Format

The first line contains single integer T - the number of test cases. Next T lines contain two integers separated by single space L and R.

Output Format

In T lines, print T integers - count of strange numbers belonging to the interval $[L, R]$.

Constraints

$1 \leq T \leq 200$
$0 \leq L<R \leq 10^{18}$

Sample Input

```
5
725
4 5 5 0
1 100
99103
0 1000000
```


Sample Output

```
10
1
26
0
96
```


Explanation

First testcase: There are 10 strange numbers that belong to the interval [7,25]. They are $7,8,9,10,12,14,16,18,20,24$.
Second testcase: Only 48 satisfies the given constraints.

