Strange numbers

HackerRank

Let length(A) denote the count of digits of a number A in its decimal representation. John is looking for new methods of determining which numbers are strange all day long. All non-negative numbers of length 1 are strange. Further, a number X with $length(X) \ge 1$ can also be considered strange if and only if

- X is evenly divisible by length(X)
- the number X/length(X) is recursively strange

Your task is to calculate how many strange numbers belong to an interval [L, R].

Input Format

The first line contains single integer T - the number of test cases. Next T lines contain two integers separated by single space L and R.

Output Format

In T lines, print T integers - count of strange numbers belonging to the interval [L, R].

Constraints

 $egin{aligned} 1 \leq T \leq 200 \ 0 \leq L < R \leq 10^{18} \end{aligned}$

Sample Input

5							
7	2	5					
45		5	0				
1	1	0	0				
99		1	0	3			
0	1	0	0	0	0	0	(

Sample Output

10 1 26 0 96

Explanation

First testcase: There are 10 strange numbers that belong to the interval [7, 25]. They are 7, 8, 9, 10, 12, 14, 16, 18, 20, 24.

Second testcase: Only 48 satisfies the given constraints.