Play with words

Shaka and his brother have created a boring game which is played like this:
They take a word composed of lowercase English letters and try to get the maximum possible score by building exactly 2 palindromic subsequences. The score obtained is the product of the length of these 2 subsequences.

Let's say A and B are two subsequences from the initial string. If $A_{i} \& A_{j}$ are the smallest and the largest positions (from the initial word) respectively in A; and $B_{i} \& B_{j}$ are the smallest and the largest positions (from the initial word) respectively in B, then the following statements hold true:
$A_{i} \leq A_{j}$,
$B_{i} \leq B_{j}, \&$
$A_{j}<B_{i}$.
i.e., the positions of the subsequences should not cross over each other.

Hence the score obtained is the product of lengths of subsequences $A \& B$. Such subsequences can be numerous for a larger initial word, and hence it becomes harder to find out the maximum possible score. Can you help Shaka and his brother find this out?

Input Format

Input contains a word S composed of lowercase English letters in a single line.

Constraints

$1<|S| \leq 3000$
each character will be a lower case english alphabet.

Output Format

Output the maximum score the boys can get from S.

Sample Input

eeegeeksforskeeggeeks

Sample Output

50

Explanation

A possible optimal solution is eee-g-ee-ksfor-skeeggeeks being eeeee the one subsequence and skeeggeeks the other one. We can also select eegee in place of eeeee, as both have the same length.

