Students Marks Sum

You are given an array of integers, marks, denoting the marks scored by students in a class.

- The alternating elements marks $_{0}$, marks $_{2}$, marks $_{4}$ and so on denote the marks of boys.
- Similarly, marks $_{1}$, marks $_{3}$, marks $_{5}$ and so on denote the marks of girls.

The array name, marks, works as a pointer which stores the base address of that array. In other words, marks contains the address where marks $_{0}$ is stored in the memory.

For example, let marks $=[3,2,5]$ and marks stores $0 x 7 f f f 9575 c 05 f$. Then, $0 x 7 f f f 9575 c 05 f$ is the memory address of $m a r k s_{0}$.

Function Description

Complete the function, marks_summation in the editor below.
marks_summation has the following parameters:

- int marks[number_of_students]: the marks for each student
- int number_of_students: the size of marks[]
- char gender: either 'g' or 'b'

Returns

- int: the sum of marks for boys if gender $=b$, or of marks of girls if gender $=g$

Input Format

- The first line contains number_of_students, denoting the number of students in the class, hence the number of elements in marks.
- Each of the number_of_students subsequent lines contains marks ${ }_{i}$.
- The next line contains gender.

Constraints

- $1 \leq$ number_of_students $\leq 10^{3}$
- $1 \leq$ marks $_{i} \leq 10^{3}$ (where $0 \leq i<$ number_of_students)
- gender $=g$ or b

Sample Input 0

```
3
3
2
5
b
```


Sample Output 0

8

Explanation 0

marks $=[3,2,5]$ and gender $=b$.
So, $m a r k s_{0}+m a r k s_{2}=3+5=8$.

Sample Input 1

```
5
1
2
3
4
5
g
```


Sample Output 1

6

Explanation 1

marks $=[1,2,3,4,5]$ and gender $=g$
So, sum $=$ marks $_{1}+$ marks $_{3}=2+5=8$.

Sample Input 2

1
5
9

Sample Output 2

Explanation 2

marks $=[5]$ and gender $=g$

Here, marks $_{1}$ does not exist. So, sum $=0$.

