Subsequence Weighting

HackerRank

A subsequence of a sequence is a sequence which is obtained by deleting zero or more elements from the sequence.

You are given a sequence A in which every element is a pair of integers i.e $A = [(a_1, w_1), (a_2, w_2), ..., (a_N, w_N)].$

For a subsequence $B = [(b_1, v_1), (b_2, v_2), \dots, (b_M, v_M)]$ of the given sequence :

- We call it increasing if for every i (1 <= i < M), $b_i < b_{i+1}$.
- $Weight(B) = v_1 + v_2 + \dots + v_M$.

Task:

Given a sequence, output the maximum weight formed by an increasing subsequence.

Input:

The first line of input contains a single integer *T*. *T* test-cases follow. The first line of each test-case contains an integer *N*. The next line contains a_1 , a_2 ,..., a_N separated by a single space. The next line contains w_1 , w_2 , ..., w_N separated by a single space.

Output:

For each test-case output a single integer: The maximum weight of increasing subsequences of the given sequence.

Constraints:

 $1 \le T \le 5$ $1 \le N \le 150000$ $1 \le a_i \le 10^9$, where $i \in [1..N]$ $1 \le w_i \le 10^9$, where $i \in [1..N]$

Sample Input:

```
2
4
1 2 3 4
10 20 30 40
8
1 2 3 4 1 2 3 4
10 20 30 40 15 15 15 50
```

Sample Output:

100 110

Explanation:

```
In the first sequence, the maximum size increasing subsequence is 4, and there's only one of them. We choose B = [(1, 10), (2, 20), (3, 30), (4, 40)], and we have Weight(B) = 100.
```

In the second sequence, the maximum size increasing subsequence is still 4, but there are now 5 possible subsequences:

Of those, the one with the greatest weight is B = [(1, 10), (2, 20), (3, 30), (4, 50)], with Weight (B) = 110.

Please note that this is not the maximum weight generated from picking the highest value element of each index. That value, 115, comes from [(1, 15), (2, 20), (3, 30), (4, 50)], which is not a valid subsequence because it cannot be created by only deleting elements in the original sequence.