Subset Component

HackerRank

You are given an array with n 64-bit integers: $d[0], d[1], \ldots, d[n-1]$.

BIT(x, i) = (x >> i) & 1, where B(x, i) is the i^{th} lower bit of x in binary form. If we regard every bit as a vertex of a graph G, there is an undirected edge between vertices i and j if there is a value k such that BIT(d[k], i) == 1 & BIT(d[k], j) == 1.

For every subset of the input array, how many connected-components are there in that graph?

A connected component in a graph is a set of nodes which are accessible to each other via a path of edges. There may be multiple connected components in a graph.

Example $d = \{1, 2, 3, 5\}$

In the real challenge, there will be 64 nodes associated with each integer in d represented as a 64 bit binary value. For clarity, only 4 bits will be shown in the example but all 64 will be considered in the calculations.

Decin	Decimal		Edges	Node ends	
d[0]	= 1	0001	0		
d[1]	= 2	0010	0		
d[2]	= 3	0011	1	0 and 1	
d[3]	= 5	0101	1	0 and 2	

Consider all subsets:

Edges							
Subset	Count	Nodes	Connected	components			
{1}	0		64				
{2}	0		64				
{3}	1	0-1	63				
{5}	1	0-2	63				
{1,2}	0		64				
{1,3}	1	0-1	63				
{1,5}	1	0-2	63				
{2,3}	1	0-1	63				
{2,5}	1	0-2	63				
{3,5}	2	0-1-2	62				
{1,2,3	} 1	0-1	63				
{1,2,5	} 1	0-2	63				
{1,3,5	} 2	0-1-2	62				
{2,3,5	} 2	0-1-2	62				
{1,2,3	,5} 2	0-1-2	62				
Sum			944				

The values 3 and 5 have 2 bits set, so they have 1 edge each. If a subset contains only a 3 or 5, there will be one connected component with 2 nodes, and 62 components with 1 node for a total of 63.

If both 3 and 5 are in a subset, 1 component with nodes 0, 1 and 2 is formed since node 0 is one end of each edge described. The other 61 nodes are solitary, so there are 62 connected components total.

All other values have only f 1 bit set, so they have no edges. They have f 64 components with f 1 node each.

Function Description

Complete the *findConnectedComponents* function in the editor below.

findConnectedComponents has the following parameters:

• *int d[n]:* an array of integers

Returns

• *int:* the sum of the number of connected components for all subsets of d **Input Format**

The first row contains the integer n, the size of d[]. The next row has n space-separated integers, d[i].

Constraints

 $egin{aligned} 1 \leq n \leq 20 \ 0 \leq d[i] \leq 2^{63}-1 \end{aligned}$

Sample Input 0

3 2 5 9

Sample Output 0

504

Explanation 0

There are 8 subset of $\{2, 5, 9\}$.

{}

=> We don't have any number in this subset => no edge in the graph => Every node is a component by itself => Number of connected-components = 64.

{2}

=> The Binary Representation of 2 is 00000010. There is a bit at only one position. => So there is no edge in the graph, every node is a connected-component by itself => Number of connected-components = 64.

{5}

=> The Binary Representation of 5 is 00000101. There is a bit at the 0th and 2nd position. => So there is an edge: (0, 2) in the graph => There is one component with a pair of nodes (0,2) in the graph. Apart from that, all remaining 62 vertices are independent components of one node each (1,3,4,5,6...63) => Number of connected-components = 63.

{9}

=> The Binary Representation of 9 is 00001001. => There is a 1-bit at the 0th and 3rd position in this

```
binary representation. => edge: (0, 3) in the graph => Number of components = 63
```

{2, 5}

- => This will contain the edge (0, 2) in the graph which will form one component
- => Other nodes are all independent components
- => Number of connected-component = 63

{2,9}

- => This has edge (0,3) in the graph
- => Similar to examples above, this has 63 connected components

{5,9}

- => This has edges (0, 2) and (0, 3) in the graph
- => Similar to examples above, this has 62 connected components

{2, 5, 9}

=> This has edges(0, 2) (0, 3) in the graph. All three vertices (0,2,3) make one component => Other 61 vertices are all independent components

=> Number of connected-components = 62

S = 64 + 64 + 63 + 63 + 63 + 63 + 62 + 62 = 504