You are given an array with $n 64$-bit integers: $d[0], d[1], \ldots, d[n-1]$.
$\operatorname{BIT}(\mathrm{x}, \mathrm{i})=(\mathrm{x} \gg \mathrm{i}) \& 1$, where $B(x, i)$ is the $i^{\text {th }}$ lower bit of x in binary form. If we regard every bit as a vertex of a graph G , there is an undirected edge between vertices i and j if there is a value k such that $\operatorname{BIT}(\mathrm{d}[\mathrm{k}], \mathrm{i})==1 \& \& \operatorname{BIT}(\mathrm{~d}[\mathrm{k}], \mathrm{j})==1$.

For every subset of the input array, how many connected-components are there in that graph?
A connected component in a graph is a set of nodes which are accessible to each other via a path of edges. There may be multiple connected components in a graph.

Example

$d=\{1,2,3,5\}$
In the real challenge, there will be 64 nodes associated with each integer in d represented as a 64 bit binary value. For clarity, only 4 bits will be shown in the example but all 64 will be considered in the calculations.

Decimal	Binary	Edges	Node ends
$d[0]=1$	0001	0	
$d[1]=2$	0010	0	
$d[2]=3$	0011	1	0 and 1
$d[3]=5$	0101	1	0 and 2

Consider all subsets:

Edges			
Subset	Count	Nodes	Connected components
\{1\}	0		64
\{2 \}	0		64
\{3\}	1	0-1	63
\{5\}	1	0-2	63
\{1,2\}	0		64
$\{1,3\}$	1	0-1	63
$\{1,5\}$	1	0-2	63
\{2,3\}	1	0-1	63
$\{2,5\}$	1	0-2	63
$\{3,5\}$	2	0-1-2	62
$\{1,2,3\}$	1	0-1	63
$\{1,2,5\}$	1	0-2	63
$\{1,3,5\}$	2	0-1-2	62
$\{2,3,5\}$	2	0-1-2	62
$\{1,2,3,5\}$	2	0-1-2	62
Sum			944

The values 3 and 5 have 2 bits set, so they have 1 edge each. If a subset contains only a 3 or 5 , there will be one connected component with 2 nodes, and 62 components with 1 node for a total of 63 .

If both 3 and 5 are in a subset, 1 component with nodes 0,1 and 2 is formed since node 0 is one end of each edge described. The other 61 nodes are solitary, so there are 62 connected components total.

All other values have only 1 bit set, so they have no edges. They have 64 components with 1 node each.

Function Description

Complete the findConnectedComponents function in the editor below.
findConnectedComponents has the following parameters:

- int $d[n]:$ an array of integers

Returns

- int: the sum of the number of connected components for all subsets of d

Input Format

The first row contains the integer n, the size of $d[]$.
The next row has n space-separated integers, $d[i]$.

Constraints

$1 \leq n \leq 20$
$0 \leq d[i] \leq 2^{63}-1$

Sample Input 0

3
259

Sample Output 0

504

Explanation 0

There are 8 subset of $\{2,5,9\}$.
\{\}
=> We don't have any number in this subset => no edge in the graph => Every node is a component by itself $=>$ Number of connected-components $=64$.
\{2\}
$=>$ The Binary Representation of 2 is 00000010 . There is a bit at only one position. $=>$ So there is no edge in the graph, every node is a connected-component by itself $=>$ Number of connected-components $=64$.
\{5\}
$=>$ The Binary Representation of 5 is 00000101 . There is a bit at the $0^{\text {th }}$ and $2^{\text {nd }}$ position. $=>$ So there is an edge: $(0,2)$ in the graph $=>$ There is one component with a pair of nodes $(0,2)$ in the graph. Apart from that, all remaining 62 vertices are indepenent components of one node each ($1,3,4,5,6 \ldots 63$) => Number of connected-components $=63$.
\{9\}
$=>$ The Binary Representation of 9 is 00001001. $=>$ There is a 1 -bit at the $0^{\text {th }}$ and $3^{\text {rd }}$ position in this

```
{2,5}
=> This will contain the edge (0,2) in the graph which will form one component
=> Other nodes are all independent components
=> Number of connected-component = 63
{2,9}
=> This has edge (0,3) in the graph
=> Similar to examples above, this has 63 connected components
{5,9}
=> This has edges (0, 2) and (0,3) in the graph
=> Similar to examples above, this has }62\mathrm{ connected components
{2,5,9}
=> This has edges(0,2) (0,3) in the graph. All three vertices (0,2,3) make one component => Other 61
vertices are all independent components
=> Number of connected-components = 62
S=64+64+63+63+63+63+62+62=504
```

