Given a rooted tree of N nodes, where each node is uniquely numbered in between [1.. N]. The node 1 is the root of the tree. Each node has an integer value which is initially 0.

You need to perform the following two kinds of queries on the tree:

- add t value: Add value to all nodes in subtree rooted at t
- max $a b$: Report maximum value on the path from a to b

Input Format

First line contains N, number of nodes in the tree. Next $N-1$ lines contain two space separated integers x and y which denote that there is an edge between node x and node y.
Next line contains Q, the number of queries to process.
Next Q lines follow with either add or max query per line.

Constraints

$1 \leq N \leq 10^{5}$
$1 \leq Q \leq 10^{5}$
$1 \leq t, a, b, x, y \leq N$
$x \neq y$
$-10^{4} \leq$ value $\leq 10^{4}$

Output Format

For each max query output the answer in a separate line.

Sample Input

```
5
12
2
24
5 1
6
add 4 30
add 5 20
max 4 5
add 2 -20
max 4 5
max 3 4
```


Sample Output

Explanation

In the test case we have the following tree:

Initially all node values are zero.
Queries are performed in the following way:
add 430 // add 30 to node 4
add 520 // add 20 to node 5
max 45 // maximum of nodes $4,2,1,5$ is 30
add 2-20 // subtract 20 from nodes 2,3,4
max 45 // maximum of nodes $4,2,1,5$ is 20
max 34 // maximum of nodes 3,2,4 is 10

