Subtrees And Paths

Given a rooted tree of N nodes, where each node is uniquely numbered in between [1..N]. The node 1 is the root of the tree. Each node has an integer value which is initially 0.

You need to perform the following two kinds of queries on the tree:

- add t value: Add value to all nodes in subtree rooted at t
- max a b: Report maximum value on the path from a to b

Input Format

First line contains N, number of nodes in the tree. Next N-1 lines contain two space separated integers x and y which denote that there is an edge between node x and node y.

Next line contains *Q*, the number of queries to process.

Next *Q* lines follow with either *add* or *max* query per line.

Constraints

 $egin{aligned} &1 \leq N \leq 10^5 \ &1 \leq Q \leq 10^5 \ &1 \leq t, a, b, x, y \leq N \ &x
eq y \ &-10^4 \leq value \leq 10^4 \end{aligned}$

Output Format

For each *max* query output the answer in a separate line.

Sample Input

Sample Output

30 20 10			
20			
10			

Explanation

In the test case we have the following tree:

Initially all node values are zero. Queries are performed in the following way:

add 4 30 // add 30 to node 4
add 5 20 // add 20 to node 5
max 4 5 // maximum of nodes 4,2,1,5 is 30
add 2 -20 // subtract 20 from nodes 2,3,4
max 4 5 // maximum of nodes 4,2,1,5 is 20
max 3 4 // maximum of nodes 3,2,4 is 10