Consider an array, A, of length n. We can split A into contiguous segments called pieces and store them as another array, B. For example, if $A=[1,2,3]$, we have the following arrays of pieces:

- $B=[(1),(2),(3)]$ contains three 1 -element pieces.
- $B=[(1,2),(3)]$ contains two pieces, one having 2 elements and the other having 1 element.
- $B=[(1),(2,3)]$ contains two pieces, one having 1 element and the other having 2 elements.
- $B=[(1,2,3)]$ contains one 3 -element piece.

We consider the value of a piece in some array B to be
(sum of all numbers in the piece) \times (length of piece), and we consider the total value of some array B to be the sum of the values for all pieces in that B. For example, the total value of $B=[(1,2,4),(5,1),(2)]$ is $(1+2+4) \times 3+(5+1) \times 2+(2) \times 1=35$.

Given A, find the total values for all possible B 's, sum them together, and print this sum modulo $\left(10^{9}+7\right)$ on a new line.

Input Format

The first line contains a single integer, n, denoting the size of array A.
The second line contains n space-separated integers describing the respective values in A (i.e., $\left.a_{0}, a_{1}, \ldots, a_{n-1}\right)$.

Constraints

- $1 \leq n \leq 10^{6}$
- $1 \leq a_{i} \leq 10^{9}$

Output Format

Print a single integer denoting the sum of the total values for all piece arrays (B^{\prime} s) of A, modulo $\left(10^{9}+7\right)$.

Sample Input 0

```
3
136
```


Sample Output 0

```
7 3
```


Explanation 0

Given $A=[1,3,6]$, our piece arrays are:

- $B=[(1),(3),(6)]$, and total value $=(1) \times 1+(3) \times 1+(6) \times 1=10$.
- $B=[(1,3),(6)]$, and total value $=(1+3) \times 2+(6) \times 1=14$.
- $B=[(1),(3,6)]$, and total value $=(1) \times 1+(3+6) \times 2=19$.
- $B=[(1,3,6)]$, and total value $=(1+3+6) \times 3=30$.

When we sum all the total values, we get $10+14+19+30=73$. Thus, we print the result of $73 \bmod \left(10^{9}+7\right)=73$ on a new line.

Sample Input 1

```
5
429101
```


Sample Output 1

971

