You are given a sequence whose $n^{\text {th }}$ term is

$$
T_{n}=n^{K} \times R^{n}
$$

You have to evaluate the series

$$
S_{n}=T_{1}+T_{2}+T_{3}+\cdots+T_{n}
$$

Find $S_{n} \bmod \left(10^{9}+7\right)$.

Input Format

The first line of input contains T, the number of test cases.
Each test case consists of three lines, each containing K, n and R respectively.

Output Format

For each test case, print the required answer in a line.

Constraints

$1 \leq T \leq 10$
$1 \leq K \leq 10^{3}$
$1 \leq n \leq 10^{16}$
$2 \leq R \leq 10^{16}$
$R \bmod \left(10^{9}+7\right) \neq 1$

Sample Input

\square

Sample Output

1146

5988

Explanation

Case 1: $1146=1^{2} \times 2^{1}+2^{2} \times 2^{2}+3^{2} \times 2^{3}+4^{2} \times 2^{4}+5^{2} \times 2^{5}$
Case 2: $5988=1^{3} \times 3^{1}+2^{3} \times 3^{2}+3^{3} \times 3^{3}+4^{3} \times 3^{4}$

