Super Functional Strings

We define a function, F, on a string, P, as follows:

$$
F(P)=\left(\operatorname{length}(P)^{\operatorname{distinct}(P)}\right) \%\left(10^{9}+7\right)
$$

where:

- length (P) denotes the number of characters in string P.
- $\operatorname{distinct}(P)$ denotes the number of distinct characters in string P.

Consuela loves creating string challenges and she needs your help testing her newest one! Given a string, S, consisting of N lowercase letters, compute the summation of function F (provided above) over all possible distinct substrings of S. As the result is quite large, print it modulo $10^{9}+7$.

Input Format

The first line contains a single integer, T, denoting the number of test cases.
Each of the T subsequent lines contains a string, S.

Constraints

- $1 \leq T \leq 100$
- $1 \leq N \leq 10^{5}$
- The sum of N over all test cases does not exceed 10^{5}.

Scoring

- $N \leq 100$ for 20% of test data.
- $N \leq 1000$ for 40% of test data.
- $N \leq 10^{5}$ for 100% of test data.

Output Format

For each test case, print the answer modulo $10^{9}+7$.

Sample Input

Sample Output

Explanation

Test 0 :
"a" and "aa" are the only distinct substrings.

- $F(" a ")=\left(1^{1}\right) \% 1000000007=1$
- $F(" a a ")=\left(2^{1}\right) \% 1000000007=2$
$a n s=(1+2) \% 1000000007=3$
Test 1:
"a", "b", "ab", "aba", and "ba" are the only distinct substrings.
- $F(" a ")=\left(1^{1}\right) \% 1000000007=1$
- $F(" a b ")=\left(2^{2}\right) \% 1000000007=4$
- $F(" a b a ")=\left(3^{2}\right) \% 1000000007=9$
- $F(" b ")=\left(1^{1}\right) \% 1000000007=1$
- $F(" b a ")=\left(2^{2}\right) \% 1000000007=4$
ans $=(1+4+9+1+4) \% 1000000007=19$

