Super Kth LIS

Given an array of N integers $(a_0, a_1, \ldots, a_{N-1})$, find all possible increasing subsequences of maximum length, L. Then print the lexicographically K^{th} longest increasing subsequence as a single line of space-separated integers; if there are less than K subsequences of length L, print -1.

Two subsequences $[a_{p_0}, a_{p_1}, \ldots, a_{p_{L-2}}, a_{p_{L-1}}]$ and $[a_{q_0}, a_{q_1}, a_{q_2}, \ldots, a_{q_{L-2}}, a_{q_{L-1}}]$ are considered to be *different* if there exists at least one i such that $p_i \neq q_i$.

Input Format

The first line contains 2 space-separated integers, N and K, respectively. The second line consists of N space-separated integers denoting $a_0, a_1, \ldots, a_{N-1}$ respectively.

Constraints

- $1 \le N \le 10^5$
- $1 \leq K \leq 10^{18}$
- $1 \leq a_i \leq N$

Scoring

- + $1 \leq N \leq 10^3$ for 30% of the test data.
- + $1 \leq N \leq 10^5$ for 100% of the test data.

Output Format

Print a single line of L space-separated integers denoting the lexicographically K^{th} longest increasing subsequence; if there are less than K subsequences of length L, print -1.

Note: L is the length of longest increasing subsequence in the array.

Sample Input 0

5	3			
1	3	1	2	5

Sample Output 0

1 3 5

Sample Input 1

52 13245

Sample Output 1

1 3 4 5

Explanation

Sample Case 0:

The longest possible increasing subsequences in lexicographical order are:

- 1. [1, 2, 5]
- 2. [1, 2, 5]
- 3. **[1, 3, 5]**

Notice that the first and second subsequences appear the same; they are actually both *different* because the 1 in the first subsequence comes from array element a_0 , and the 1 in the second subsequence comes from array element a_2 . Because K = 3, we print the 3^{rd} one ([1,3,5]) as a single line of space-separated integers.

Sample Case 1:

The longest possible increasing subsequences in lexicographical order are:

- 1. [1, 2, 4, 5]
- 2. [1, 3, 4, 5]

Because K=2, we print the 2^{nd} one ([1,3,4,5]) as a single line of space-separated integers.