You are given an array $A=[1,2,3, \ldots, n]$:

1. How many sequences $\left(S_{1}\right)$ can you get after exact k adjacent swaps on A ?
2. How many sequences $\left(S_{2}\right)$ can you get after at most k swaps on A ?

An adjacent swap can be made between two elements of the Array $A, A[i]$ and $A[i+1]$ or $A[i]$ and $A[i-1]$. A swap otherwise can be between any two elements of the array $A[i]$ and $A[j] \forall 1 \leq i, j \leq N, i \neq j$.

Input Format

First and only line contains n and k separated by space.

Constraints

$1 \leq \mathrm{n} \leq 2500$
$1 \leq \mathrm{k} \leq 2500$

Output Format

Output $S_{1} \%$ MOD and $S_{2} \%$ MOD in one line, where MOD $=1000000007$.

Sample Input

```
32
```


Sample Output

```
    36
```


Explanation

```
Original array: [1, 2, 3]
1. After 2 adjacent swaps:
We can get [1, 2, 3], [2, 3, 1], [3, 1, 2] ==> S1 == 3
2. After at most 2 swaps:
1) After O swap: [1, 2, 3]
2) After 1 swap: [2, 1, 3], [3, 2, 1], [1, 3, 2].
3) After 2 swaps: [1, 2, 3], [2, 3, 1], [3, 1, 2]
==> S2 == 6
```

