Two children, Lily and Ron, want to share a chocolate bar. Each of the squares has an integer on it.
Lily decides to share a contiguous segment of the bar selected such that:

- The length of the segment matches Ron's birth month, and,
- The sum of the integers on the squares is equal to his birth day.

Determine how many ways she can divide the chocolate.

$$
\begin{aligned}
& \text { Example } \\
& s=[2,2,1,3,2] \\
& d=4 \\
& m=2
\end{aligned}
$$

Lily wants to find segments summing to Ron's birth day, $d=4$ with a length equalling his birth month, $m=2$. In this case, there are two segments meeting her criteria: $[2,2]$ and $[1,3]$.

Function Description

Complete the birthday function in the editor below.
birthday has the following parameter(s):

- int $s[n]$: the numbers on each of the squares of chocolate
- int d: Ron's birth day
- int m: Ron's birth month

Returns

- int: the number of ways the bar can be divided

Input Format

The first line contains an integer n, the number of squares in the chocolate bar.
The second line contains n space-separated integers $s[i]$, the numbers on the chocolate squares where $0 \leq i<n$.
The third line contains two space-separated integers, d and m, Ron's birth day and his birth month.

Constraints

- $1 \leq n \leq 100$
- $1 \leq s[i] \leq 5$, where $(0 \leq i<n)$
- $1 \leq d \leq 31$
- $1 \leq m \leq 12$

Sample Input 0

```
5
2 1 3 2
3
```


Sample Output 0

2

Explanation 0

Lily wants to give Ron $m=2$ squares summing to $d=3$. The following two segments meet the criteria:

Sample Input 1

```
6
1}111111
3
```


Sample Output 1

0

Explanation 1

Lily only wants to give Ron $m=2$ consecutive squares of chocolate whose integers sum to $d=3$. There are no possible pieces satisfying these constraints:

Thus, we print 0 as our answer.

Sample Input 2

```
1
4
```


Sample Output 2

1

Explanation 2

Lily only wants to give Ron $m=1$ square of chocolate with an integer value of $d=4$. Because the only square of chocolate in the bar satisfies this constraint, we print 1 as our answer.

