The Power Sum

Find the number of ways that a given integer, X, can be expressed as the sum of the $N^{t h}$ powers of unique, natural numbers.

For example, if $X=13$ and $N=2$, we have to find all combinations of unique squares adding up to 13 . The only solution is $2^{2}+3^{2}$.

Function Description

Complete the powerSum function in the editor below. It should return an integer that represents the number of possible combinations.
powerSum has the following parameter(s):

- X : the integer to sum to
- N : the integer power to raise numbers to

Input Format

The first line contains an integer X.
The second line contains an integer N.

Constraints

- $1 \leq X \leq 1000$
- $2 \leq N \leq 10$

Output Format

Output a single integer, the number of possible combinations caclulated.

Sample Input 0

```
10
```

2

Sample Output 0

Explanation 0

If $X=10$ and $N=2$, we need to find the number of ways that 10 can be represented as the sum of squares of unique numbers.
$10=1^{2}+3^{2}$
This is the only way in which 10 can be expressed as the sum of unique squares.

Sample Input 1

100
2

Sample Output 1

3

Explanation 1

$$
100=\left(10^{2}\right)=\left(6^{2}+8^{2}\right)=\left(1^{2}+3^{2}+4^{2}+5^{2}+7^{2}\right)
$$

Sample Input 2

```
100
```

3

Sample Output 2

1

Explanation 2

100 can be expressed as the sum of the cubes of $1,2,3,4$.
$(1+8+27+64=100)$. There is no other way to express 100 as the sum of cubes.

