Roads and Libraries

Determine the minimum cost to provide library access to all citizens of HackerLand. There are n cities numbered from 1 to n. Currently there are no libraries and the cities are not connected. Bidirectional roads may be built between any city pair listed in cities. A citizen has access to a library if:

- Their city contains a library.
- They can travel by road from their city to a city containing a library.

Example

The following figure is a sample map of HackerLand where the dotted lines denote possible roads:

$c _r o a d=2$
c_lib $=3$
cities $=[[1,7],[1,3],[1,2],[2,3],[5,6],[6,8]]$
The cost of building any road is $c c _r o a d=2$, and the cost to build a library in any city is $c _l i b=3$. Build 5 roads at a cost of $5 \times 2=10$ and 2 libraries for a cost of 6 . One of the available roads in the cycle $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ is not necessary.

There are q queries, where each query consists of a map of HackerLand and value of $c _l i b$ and $c _r o a d$. For each query, find the minimum cost to make libraries accessible to all the citizens.

Function Description

Complete the function roadsAndLibraries in the editor below. roadsAndLibraries has the following parameters:

- int n : integer, the number of cities
- int c_lib: integer, the cost to build a library
- int c_road: integer, the cost to repair a road
- int cities[m][2]: each cities[i] contains two integers that represent cities that can be connected by a new road

Returns

- int: the minimal cost

Input Format

The first line contains a single integer q, that denotes the number of queries.

The subsequent lines describe each query in the following format:

- The first line contains four space-separated integers that describe the respective values of $n, m, c _l i b$ and $c _r o a d$, the number of cities, number of roads, cost of a library and cost of a road.
- Each of the next m lines contains two space-separated integers, $u[i]$ and $v[i]$, that describe a bidirectional road that can be built to connect cities $u[i]$ and $v[i]$.

Constraints

- $1 \leq q \leq 10$
- $1 \leq n \leq 10^{5}$
- $0 \leq m \leq \min \left(10^{5}, \frac{n \cdot(n-1)}{2}\right)$
- $1 \leq c _r o a d, c _l i b \leq 10^{5}$
- $1 \leq u[i], v[i] \leq n$
- Each road connects two distinct cities.

Sample Input

```
STDIN Function
```

STDIN Function
----- --------
----- --------
q=2
q=2
3 2 1 n = 3, cities[] size m = 3, c_lib = 2, c_road = 1
3 2 1 n = 3, cities[] size m = 3, c_lib = 2, c_road = 1
2 cities = [[1, 2], [3, 1], [2, 3]]
2 cities = [[1, 2], [3, 1], [2, 3]]
n = 6, cities[] size m = 6, c_lib = 2, c_road = 5
n = 6, cities[] size m = 6, c_lib = 2, c_road = 5
cities = [[1, 3], [3, 4],...]

```
cities = [[1, 3], [3, 4],...]
```

Sample Output

4
12

Explanation

Perform the following $q=2$ queries:

1. HackerLand contains $n=3$ cities and can be connected by $m=3$ bidirectional roads. The price of building a library is $c_{l i b}=2$ and the price for repairing a road is $c_{\text {road }}=1$.

The cheapest way to make libraries accessible to all is to:

- Build a library in city 1 at a cost of $x=2$.
- Build the road between cities 1 and 2 at a cost of $y=1$.
- Build the road between cities 2 and 3 at a cost of $y=1$.

This gives a total cost of $2+1+1=4$. Note that the road between cities 3 and 1 does not need to be built because each is connected to city 2 .
2. In this scenario it is optimal to build a library in each city because the cost to build a library is less than the cost to build a road.

There are 6 cities, so the total cost is $6 \times 2=12$.

