Tower Breakers, Revisited!

Two players (numbered 1 and 2) are playing a game of Tower Breakers! The rules of the game are as follows:

- Player 1 always moves first, and both players always move optimally.
- Initially there are N towers of various heights.
- The players move in alternating turns. In each turn, a player can choose a tower of height X and reduce its height to Y, where $1 \leq Y<X$ and Y evenly divides X.
- If the current player is unable to make any move, they lose the game.

Given the value of N and the respective height values for all towers, can you determine who will win? If the first player wins, print 1 ; otherwise, print 2.

Input Format

The first line contains an integer, T, denoting the number of test cases.
Each of the $2 T$ subsequent lines defines a test case. Each test case is described over the following two lines:

1. An integer, N, denoting the number of towers.
2. N space-separated integers, $h_{0}, h_{1}, \ldots, h_{N-1}$, where each h_{i} describes the height of tower i.

Constraints

- $1 \leq T \leq 100$
- $1 \leq N \leq 100$
- $1 \leq h_{i} \leq 10^{6}$

Output Format

For each test case, print a single integer denoting the winner (i.e., either 1 or 2) on a new line.

Sample Input

```
2
2
3
2 3
```


Sample Output

Explanation

Test Case 0:
Player 1 reduces the second tower to height 1 and subsequently wins.
Test Case 1:
There are two possible moves:

1. Reduce the second tower to 1
2. Reduce the third tower to 1 .

Whichever move player 1 makes, player 2 will make the other move. Thus, player 2 wins.

