Tower Breakers - The Final Battle

Our unsung tower-breaking heroes (players P_{1} and P_{2}) only have one tower left, and they've decided to break it for a special game commemorating the end of 5 days of Game Theory! The rules are as follows:

- P_{1} always moves first, and both players always move optimally.
- Initially there is 1 tower of height N.
- The players move in alternating turns. The moves performed by each player are different:

1. At each turn, P_{1} divides the current tower into some number of smaller towers. If the turn starts with a tower of height H and P_{1} breaks it into $x \geq 2$ smaller towers, the following condition must apply: $H=h_{1}+h_{2}+\ldots+h_{x}$, where h_{i} denotes the height of the $i^{t h}$ new tower.
2. At each turn, P_{2} chooses some tower k of the x new towers made by P_{1} (where $1 \leq k \leq x$). Then P_{1} must pay k^{2} coins to P_{2}. After that, P_{1} gets another turn with tower h_{k} and the game continues.

- The game is over when no valid move can be made by P_{1}, meaning that $H=1$.
- P_{1} 's goal is to pay as few coins as possible, and P_{2} 's goal is to earn as many coins as possible.

Can you predict the number of coins that P_{2} will earn?

Input Format

The first line contains a single integer, T, denoting the number of test cases. Each of the T subsequent lines contains a single integer, N, defining the initial tower height for a test case.

Constraints

- $1 \leq T \leq 100$
- $2 \leq N \leq 10^{18}$

Output Format

For each test case, print a single integer denoting the number of coins earned by P_{2} on a new line.

Sample Input

Sample Output

Explanation

Test Case 0:
Our players make the following moves:

1. $H=N=4$
2. P_{1} splits the initial tower into 2 smaller towers of sizes 3 and 1 .
3. P_{2} chooses the first tower and earns $1^{2}=1$ coin.
4. $H=3$
5. P_{1} splits the tower into 2 smaller towers of sizes 2 and 1.
6. P_{2} chooses the first tower and earns $1^{2}=1$ coin.
7. $H=2$
8. P_{1} splits the tower into 2 smaller towers of size 1 .
9. P_{2} chooses the second tower and earns $2^{2}=4$ coins.

The total number of coins earned by P_{2} is $1+1+4=6$, so we print 6 on a new line.

