Recall that a tree is an undirected, connected acyclic graph. We have a weighted tree, T, with n vertices; let $d i s t_{u, v}$ be the total sum of edge weights on the path between nodes u and v.

Let's consider all the matrices, $A_{u, v}$, such that:

- $A_{u, v}=-A_{v, u}$
- $0 \leq\left|A_{u, v}\right| \leq d i s t_{u, v}$
- $\sum_{i=1}^{n} A_{u, i}=0$ for each $u \neq 1$ and $u \neq n$

We consider the total value of matrix A to be:

$$
\sum_{i=1}^{n} A_{1, i}
$$

Calculate and print the maximum total value of A for a given tree, T.

Input Format

The first line contains a single positive integer, n, denoting the number of vertices in tree T.
Each line i of the $n-1$ subsequent lines contains three space-separated positive integers denoting the respective a_{i}, b_{i}, and c_{i} values defining an edge connecting nodes a_{i} and b_{i} (where $1 \leq a_{i}, b_{i} \leq n$) with edge weight c_{i}.

Constraints

- $2 \leq n \leq 500000$
- $1 \leq c_{i} \leq 10^{4}$
- Test cases with $n \leq 10$ have 30% of total score
- Test cases with $n \leq 500$ have 60% of total score

Output Format

Print a single integer denoting the maximum total value of matrix A satisfying the properties specified in the Problem Statement above.

Sample Input

```
3
1 2 2
1 31
```


Sample Output

Explanation

In the sample case, matrix A is:

$$
A=\left(\begin{array}{ccc}
0 & 2 & 1 \\
-2 & 0 & 2 \\
-1 & -2 & 0
\end{array}\right)
$$

The sum of the elements of the first row is equal to 3 .

