Tree Splitting

Given a tree with vertices numbered from 1 to n. You need to process m queries. Each query represents a vertex number encoded in the following way:

Queries are encoded in the following way: Let, m_{j} be the $j^{\text {th }}$ query and $a n s_{j}$ be the answer for the $j^{\text {th }}$ query where $1 \leq j \leq m$ and $a n s_{0}$ is always 0 . Then vertex $v_{j}=a n s_{j-1} \oplus m_{j}$. We are assure that v_{j} is between 1 and n, and hasn't been removed before.

Note: \oplus is the bitwise XOR operator.
For each query, first decode the vertex v and then perform the following:

1. Print the size of the connected component containing v.
2. Remove vertex v and all edges connected to v.

Input Format

The first line contains a single integer, n, denoting the number of vertices in the tree. Each line i of the $n-1$ subsequent lines (where $0 \leq i<n$) contains 2 space-separated integers describing the respective nodes, u_{i} and v_{i}, connected by edge i.
The next line contains a single integer, m, denoting the number of queries.
Each line j of the m subsequent lines contains a single integer, vertex number m_{j}.

Constraints

- $1 \leq n, m \leq 2 \cdot 10^{5}$.

Output Format

For each query, print the size of the corresponding connected component on a new line.

Sample Input 0

\square

Sample Output 0

Sample Input 1

Sample Output 1

Explanation

Sample Case 0:

We have, $a n s_{0}=0$ and connected component: $[1,2,3]$
query $_{1}$ has vertex $=a n s_{0} \oplus m_{1}=0 \oplus 1=1$. The size of connected component containing 1 is 3 .
So, $a n s_{1}=3$. Removing vertex 1 and all of it's edges, we get two disconnected components : [2], [3] q^{\prime} uery $_{2}$ has vertex $=a n s_{1} \oplus m_{2}=3 \oplus 1=2$. The size of connected component containing 2 is 1 . So, $a n s_{2}=1$.
Removing vertex 2 and all of it's edges, we are left with only one component : [3] query $_{3}$ has vertex $=a n s_{2} \oplus m_{3}=1 \oplus 2=3$. The size of connected component containing 3 is 1 . So, $a n s_{3}=1$.
Removed vertex 3 .

Sample Case 1:

We have, $a n s_{0}=0$ and connected component: $[1,2,3,4]$
query y_{1} has vertex $=a n s_{0} \oplus m_{1}=0 \oplus 3=3$. The size of connected component containing 3 is 4 . So, $a n s_{1}=4$.
Removing vertex 3 and all of it's edges, we get component: $[1,2,4]$
query $_{2}$ has vertex $=a n s_{1} \oplus m_{2}=4 \oplus 6=2$. The size of connected component containing 2 is 3 . So, $a n s_{2}=3$.
Removing vertex 2 and all of it's edges, now, we get two disconnected components : $[1,4]$
query $_{3}$ has vertex $=a n s_{2} \oplus m_{3}=3 \oplus 2=1$. The size of connected component containing 1 is 2 . So, $a n s_{3}=2$.
Removing vertex 1 and all of it's edges, now we are left with only one component : [4] query $_{4}$ has vertex $=a n s_{3} \oplus m_{4}=2 \oplus 6=4$. The size of connected component containing 4 is 1 . So, $a n s_{4}=1$.
Removed vertex 4 .

