Tripartite Matching

You are given 3 unweighted, undirected graphs, G_{1}, G_{2}, and G_{3}, with n vertices each, where the $k^{\text {th }}$ graph has m_{k} edges and the vertices in each graph are numbered from 1 through n. Find the number of ordered triples (a, b, c), where $1 \leq a, b, c \leq n, a \neq b, b \neq c, c \neq a$, such that there is an edge (a, b) in G_{1}, an edge (b, c) in G_{2}, and an edge (c, a) in G_{3}.

Input Format

The first line contains single integer, n, denoting the number of vertices in the graphs. The subsequent lines define G_{1}, G_{2}, and G_{3}. Each graph is defined as follows:

1. The first line contains an integer, m, describing the number of edges in the graph being defined.
2. Each line i of the m subsequent lines (where $1 \leq i \leq m$) contains 2 space-separated integers describing the respective nodes, u_{i} and v_{i} connected by edge i.

Constraints

- $n \leq 10^{5}$
- $m_{k} \leq 10^{5}$, and $k \in\{1,2,3\}$
- Each graph contains no cycles and any pair of directly connected nodes is connected by a maximum of 1 edge.

Output Format

Print a single integer denoting the number of distinct (a, b, c) triples as described in the Problem Statement above.

Sample Input

Sample Output

3

Explanation

There are three possible triples in our Sample Input:

1. $(1,2,3)$
2. $(2,1,3)$
3. $(3,2,1)$

Thus, we print 3 as our output.

