Tripartite Matching You are given 3 unweighted, undirected graphs, G_1 , G_2 , and G_3 , with n vertices each, where the k^{th} graph has m_k edges and the vertices in each graph are numbered from 1 through n. Find the number of ordered triples (a,b,c), where $1 \leq a,b,c \leq n$, $a \neq b,b \neq c,c \neq a$, such that there is an edge (a,b) in G_1 , an edge (b,c) in G_2 , and an edge (c,a) in G_3 . ### **Input Format** The first line contains single integer, n, denoting the number of vertices in the graphs. The subsequent lines define G_1 , G_2 , and G_3 . Each graph is defined as follows: - 1. The first line contains an integer, m, describing the number of edges in the graph being defined. - 2. Each line i of the m subsequent lines (where $1 \le i \le m$) contains 2 space-separated integers describing the respective nodes, u_i and v_i connected by edge i. #### **Constraints** - $n < 10^5$ - $m_k \leq 10^5$, and $k \in \{1,2,3\}$ - ullet Each graph contains no cycles and any pair of directly connected nodes is connected by a maximum of ullet edge. ## **Output Format** Print a single integer denoting the number of distinct (a,b,c) triples as described in the *Problem Statement* above. #### Sample Input ``` 3 2 1 2 2 3 3 1 2 1 3 2 3 2 1 3 2 3 ``` #### Sample Output 3 ## **Explanation** There are three possible triples in our Sample Input: - 1. (1, 2, 3) - 2. (2,1,3) - 3. **(3, 2, 1)** Thus, we print ${\bf 3}$ as our output.