There is an integer array d which does not contain more than two elements of the same value. How many distinct ascending triples ($d[i]<d[j]<d[k], i<j<k$) are present?

Input format

The first line contains an integer, N, denoting the number of elements in the array. This is followed by a single line, containing N space-separated integers. Please note that there are no leading spaces before the first number, and there are no trailing spaces after the last number.

Output format:

A single integer that denotes the number of distinct ascending triplets present in the array.

Constraints:

$N \leq 10^{5}$
Every element of the array is present at most twice.
Every element of the array is a 32-bit non-negative integer.

Sample input:

6
112234

Sample output:

4

Explanation

The distinct triplets are
$(1,2,3)$
$(1,2,4)$
$(1,3,4)$
$(2,3,4)$
The elements of the array might not be sorted. Make no assumptions of the same.

