
1/3

Intro to Tutorial

Challenges

About Tutorial Challenges

Many of the challenges on HackerRank are difficult and assume that you already know the relevant

algorithms. These tutorial challenges are different. They break down algorithmic concepts into smaller

challenges so that you can learn the algorithm by solving them. They are intended for those who already

know some programming, however. You could be a student majoring in computer science, a self-taught

programmer, or an experienced developer who wants an active algorithms review. Here's a great place to

learn by doing!

The first series of challenges covers sorting. They are listed below:

Tutorial Challenges - Sorting

Insertion Sort challenges

Insertion Sort 1 - Inserting

Insertion Sort 2 - Sorting

Correctness and loop invariant

Running Time of Algorithms

Quicksort challenges

Quicksort 1 - Partition

Quicksort 2 - Sorting

Quicksort In-place (advanced)

Running time of Quicksort

Counting sort challenges

Counting Sort 1 - Counting

Counting Sort 2 - Simple sort

Counting Sort 3 - Preparing

Full Counting Sort (advanced)

There will also be some challenges where you'll get to apply what you've learned using the completed

algorithms.

About the Challenges

Each challenge will describe a scenario and you will code a solution. As you progress through the

challenges, you will learn some important concepts in algorithms. In each challenge, you will receive

input on STDIN and you will need to print the correct output to STDOUT.

https://www.hackerrank.com/challenges/insertionsort1
https://www.hackerrank.com/challenges/insertionsort2
https://www.hackerrank.com/challenges/correctness-invariant
https://www.hackerrank.com/challenges/runningtime
https://www.hackerrank.com/challenges/quicksort1
https://www.hackerrank.com/challenges/quicksort2
https://www.hackerrank.com/challenges/quicksort3
https://www.hackerrank.com/challenges/quicksort4
https://www.hackerrank.com/challenges/countingsort1
https://www.hackerrank.com/challenges/countingsort2
https://www.hackerrank.com/challenges/countingsort3
https://www.hackerrank.com/challenges/countingsort4
http://en.wikipedia.org/wiki/Standard_streams#Standard_input_.28stdin.29

2/3

There may be time limits that will force you to make your code efficient. If you receive a "Terminated due

to time out" message when you submit your solution, you'll need to reconsider your method. If you want

to test your code locally, each test case can be downloaded, inputs and expected results, using hackos.

You earn hackos as you solve challenges, and you can spend them on these tests.

For many challenges, helper methods (like an array) will be provided for you to process the input into a

useful format. You can use these methods to get started with your program, or you can write your own

input methods if you want. Your code just needs to print the right output to each test case.

Sample Challenge

This is a simple challenge to get things started. Given a sorted array () and a number (), can you

print the index location of in the array?

Example

Return for a zero-based index array.

If you are going to use the provided code for I/O, this next section is for you.

Function Description

Complete the introTutorial function in the editor below. It must return an integer representing the zero-

based index of .

introTutorial has the following parameter(s):

int arr[n]: a sorted array of integers

int V: an integer to search for

Returns

int: the index of in

The next section describes the input format. You can often skip it, if you are using included methods or

code stubs.

Input Format

The first line contains an integer, , a value to search for.

The next line contains an integer, , the size of . The last line contains space-separated integers,

each a value of where .

The next section describes the constraints and ranges of the input. You should check this section to know

the range of the input.

Constraints

3/3

 will occur in exactly once.

This "sample" shows the first input test case. It is often useful to go through the sample to understand a

challenge.

Sample Input 0

STDIN Function

----- --------

4 V = 4

6 arr[] size n = 6 (not passed, see function description parameters)

1 4 5 7 9 12 arr = [1, 4, 5, 7, 9, 12]

Sample Output 0

1

Explanation 0

. The value is the element in the array. Its index is since the array indices start from (see

array definition under Input Format).

