Permuting Two Arrays

There are two n-element arrays of integers, A and B. Permute them into some A^{\prime} and B^{\prime} such that the relation $A^{\prime}[i]+B^{\prime}[i] \geq k$ holds for all i where $0 \leq i<n$.

There will be q queries consisting of A, B, and k. For each query, return yES if some permutation A^{\prime}, B^{\prime} satisfying the relation exists. Otherwise, return No.

Example

$A=[0,1]$
$B=[0,2]$
$k=1$
A valid A^{\prime}, B^{\prime} is $A^{\prime}=[1,0]$ and $B^{\prime}=[0,2]: 1+0 \geq 1$ and $0+2 \geq 1$. Return YES.

Function Description

Complete the twoArrays function in the editor below. It should return a string, either YES or no.
twoArrays has the following parameter(s):

- int k : an integer
- int $A[n]$: an array of integers
- int $B[n]$: an array of integers

Returns

- string: either YES or No

Input Format

The first line contains an integer q, the number of queries.
The next q sets of 3 lines are as follows:

- The first line contains two space-separated integers n and k, the size of both arrays A and B, and the relation variable.
- The second line contains n space-separated integers $A[i]$.
- The third line contains n space-separated integers $B[i]$.

Constraints

- $1 \leq q \leq 10$
- $1 \leq n \leq 1000$
- $1 \leq k \leq 10^{9}$
- $0 \leq A[i], B[i] \leq 10^{9}$

Sample Input

```
STDIN Function
---- --------
2 q=2
10 A[] and B[] size n = 3, k = 10
1 3 A = [2, 1, 3]
8 9 B = [7, 8, 9]
5 A[] and B[] size n = 4, k = 5
2 2 1 A = [1, 2, 2, 1]
3 34 B = [3, 3, 3, 4]
```


Sample Output

```
    YES
```

NO

Explanation

There are two queries:

1. Permute these into $A^{\prime}=[1,2,3]$ and $B^{\prime}=[9,8,7]$ so that the following statements are true:

- $A[0]+B[1]=1+9=10 \geq k$
- $A[1]+B[1]=2+8=10 \geq k$
- $A[2]+B[2]=3+7=10 \geq k$

2. $A=[1,2,2,1], B=[3,3,3,4]$, and $k=5$. To permute A and B into a valid A^{\prime} and B^{\prime}, there must be at least three numbers in A that are greater than 1 .
