Two Characters

Given a string, remove characters until the string is made up of any two alternating characters. When you choose a character to remove, all instances of that character must be removed. Determine the longest string possible that contains just two alternating letters.

Example

$s=$ 'abaacdabd'

Delete a, to leave bcdbd. Now, remove the character c to leave the valid string bdbd with a length of 4. Removing either b or d at any point would not result in a valid string. Return 4.

Given a string s, convert it to the longest possible string t made up only of alternating characters. Return the length of string t. If no string t can be formed, return 0 .

Function Description

Complete the alternate function in the editor below.
alternate has the following parameter(s):

- string s: a string

Returns.

- int: the length of the longest valid string, or 0 if there are none

Input Format

The first line contains a single integer that denotes the length of s.
The second line contains string s.

Constraints

- $1 \leq$ length of $\mathrm{s} \leq 1000$
- $s[i] \in \operatorname{ascii}[\mathrm{a}-\mathrm{z}]$

Sample Input

```
STDIN Function
----- --------
10 length of }\textrm{S}=1
beabeefeab s = 'beabeefeab'
```


Sample Output

Explanation

The characters present in s are a, b, e, and $£$. This means that t must consist of two of those characters and we must delete two others. Our choices for characters to leave are [a,b], [a,e], [a, f], [b, e], [b, f] and [e,f].

If we delete e and f, the resulting string is babab. This is a valid t as there are only two distinct characters (a and b), and they are alternating within the string.

If we delete a and f, the resulting string is bebeeeb. This is not a valid string t because there are consecutive e's present. Removing them would leave consecutive b's, so this fails to produce a valid string t.

Other cases are solved similarly.
babab is the longest string we can create.

