Two Robots

You have a warehouse with M containers filled with an infinite number of candies. The containers are arranged in a single row, equally spaced to be 1 meter apart. You also have 2 robots that can pick up 1 piece of candy and transport it between any two containers.

The robots take instructions in the form of queries consisting of two integers, M_{a} and M_{b}, respectively. To execute a query, a robot travels to container M_{a}, picks up 1 candy, transports it to container M_{b}, and then stops at M_{b} until it receives another query.

Calculate the minimum total distance the robots must travel to execute N queries in order.
Note: You choose which robot executes each query.

Input Format

The first line contains a single integer, T (the number of test cases); each of the T test cases is described over $N+1$ lines.

The first line of a test case has two space-separated integers, M (the number of containers) and N (the number of queries).
The N subsequent lines each contain two space-separated integers, M_{a} and M_{b}, respectively; each line N_{i} describes the $i^{\text {th }}$ query.

Constraints

- $1 \leq T \leq 50$
- $1<M \leq 1000$
- $1 \leq N \leq 1000$
- $1 \leq a, b \leq M$
- $M_{a} \neq M_{b}$

Output Format

On a new line for each test case, print an integer denoting the minimum total distance that the robots must travel to execute the queries in order.

Sample Input

Sample Output

\square

Explanation

In this explanation, we refer to the two robots as R_{1} and R_{2}, each container i as M_{i}, and the total distance traveled for each query j as D_{j}.

Note: For the first query a robot executes, there is no travel distance. For each subsequent query that robot executes, it must travel from the location where it completed its last query.

Test Case 0:
The minimum distance traveled is 11 :

- Robot: R_{1}

$$
\begin{aligned}
& M_{1} \rightarrow M_{5} \\
& D_{0}=|1-5|=4 \text { meters. }
\end{aligned}
$$

- Robot: R_{2}
$M_{3} \rightarrow M_{2}$
$D_{1}=|3-2|=1$ meter.
- Robot: R_{1}
$M_{5} \rightarrow M_{4} \rightarrow M_{1}$
$D_{2}=|5-4|+|4-1|=1+3=4$ meters.
- Robot: R_{2}

$$
\begin{aligned}
& M_{2} \rightarrow M_{2} \rightarrow M_{4} \\
& D_{3}=|2-2|+|2-4|=0+2=2 \text { meters. }
\end{aligned}
$$

Sum the distances traveled ($D_{0}+D_{1}+D_{2}+D_{3}=4+1+4+2=11$) and print the result on a new line.

Test Case 1:

- Robot: R_{1}
$M_{1} \rightarrow M_{2}$
$D_{0}=|1-2|=1$ meters.
- Robot: R_{2}
$M_{4} \rightarrow M_{3}$
$D_{1}=|4-3|=1$ meters.
Sum the distances traveled ($D_{0}+D_{1}=1+1=2$) and print the result on a new line.
Test Case 2:
- Robot: R_{1}
$M_{2} \rightarrow M_{4}$
$D_{0}=|2-4|=2$ meters.
- Robot: R_{1}
$M_{4} \rightarrow M_{5} \rightarrow M_{4}$
$D_{1}=|4-5|+|5-4|=1+1=2$ meters.
- Robot: R_{2}
$M_{9} \rightarrow M_{8}$
$D_{2}=|9-8|=1$ meters.
Sum the distances traveled ($D_{0}+D_{1}+D_{2}=2+2+1=5$) and print the result on a new line.

