Two Strings Game

Consider the following game for two players:
There are two strings A and B. Initially, some strings A^{\prime} and B^{\prime} are written on the sheet of paper. A^{\prime} is always a substring of A and B^{\prime} is always a substring of B. A move consists of appending a letter to exactly one of these strings: either to A^{\prime} or to B^{\prime}. After the move the constraint of A^{\prime} being a substring of A and B^{\prime} is a substring of B should still be satisfied. Players take their moves alternately. We call a pair ($\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$) a position.

Two players are playing this game optimally. That means that if a player has a move that leads to his/her victory, he/she will definitely use this move. If a player is unable to make a move, he loses.

Alice and Bob are playing this game. Alice makes the first move. As always, she wants to win and this time she does a clever trick. She wants the starting position to be the $K^{\text {th }}$ lexicographically winning position for the first player (i.e. her). Consider two positions ($\mathrm{A}^{\prime}{ }_{1}, \mathrm{~B}^{\prime}{ }_{1}$) and ($\mathrm{A}^{\prime}{ }_{2}, \mathrm{~B}^{\prime}{ }_{2}$). We consider the first position lexicographically smaller than the second if $A 1$ is lexicographically smaller than $A 2$, or if $A 1$ is equal to A 2 and B 1 is lexicographically smaller than B2.

Please help her to find such a position, knowing the strings A, B and the integer K.
Note: An empty string has higher precedence than character "a"

Input Format

The first line of input consists of three integers, separated by a single space: N, M and K denoting the length of A, the length of B and K respectively. The second line consists of N small latin letters, corresponding to the string A. The third line consists of M small latin letters, corresponding to the string B.

Constraints

$1<=N, M<=3 * 10^{5}$
$1<=\mathrm{K}<=10^{18}$

Output Format

Output A^{\prime} on the first line of input and B^{\prime} on the second line of input. Please, pay attention that some of these strings can be empty. If there's no such pair, output "no solution" without quotes.

Sample Input 0

```
2 3
ab
c
```


Sample Output 0

Explanation 0

The given strings are $a b$ and c. So there are $(2 * 2) *(2)=8$ ways to fill a starting position (each character has two options, either to be present or not present).

1. ["", ""] : If this is the start position, Alice will append a to A^{\prime}. So, the next two moves will consist of appending b and c to A^{\prime} and B^{\prime} respectively. So, Bob will suffer lack of moves and hence Alice wins.
2. ["", "c"] : If this is the start position, Alice will append b to A^{\prime}. Now, Bob will suffer lack of moves and hence Alice wins.
3. ["a", ""] : If Alice appends b to A^{\prime} then Bob will append c to B^{\prime} and if Alice appends c to B^{\prime} then Bob will append b to A^{\prime}. So Alices looses.
4. ["a", "c"] : If this is the start position, Alice will append b to A^{\prime}. Now, Bob will suffer lack of moves and hence Alice wins.
5. ["ab", ""] : If this is the start position, Alice will append c to B^{\prime}. Now, Bob will suffer lack of moves and hence Alice wins.
6. ["ab", "c"] : If this is the start position, Alice will suffer lack of moves and hence he looses.
7. ["b", ""] : If this is the start position, Alice will append c to B^{\prime}. Now, Bob will suffer lack of moves and hence Alice wins.
8. ["b", "c"] : If this is the start position, Alice will suffer lack of moves and hence he looses.

So, the list of start positions in lexicographical order where Alice wins are: ["", ""], ["", "c"], ["a", "c"], ["ab", ""], ["b", ""]. The $3^{\text {rd }}$ one in this list is ["a", "c"].

