Two Subarrays

Consider an array, $A=a_{0}, a_{1}, \ldots, a_{n-1}$, of n integers. We define the following terms:

- Subsequence

A subsequence of A is an array that's derived by removing zero or more elements from A without changing the order of the remaining elements. Note that a subsequence may have zero elements, and this is called the empty subsequence.

- Strictly Increasing Subsequence

A non-empty subsequence is strictly increasing if every element of the subsequence is larger than the previous element.

- Subarray

A subarray of A is an array consisting of a contiguous block of A 's elements in the inclusive range from index l to index r. Any subarray of A can be denoted by $A[l, r]=a_{l}, a_{l+1}, \ldots, a_{r}$.

The diagram below shows all possible subsequences and subarrays of $A=[2,1,3]$:

We define the following functions:

- $\operatorname{sum}(l, r)=a_{l}+a_{l+1}+\ldots+a_{r}$
- $\operatorname{inc}(l, r)=$ the maximum sum of some strictly increasing subsequence in subarray $A[l, r]$
- $f(l, r)=\operatorname{sum}(l, r)-i n c(l, r)$

We define the goodness, g, of array A to be:

$$
g=\max f(l, r) \text { for } 0 \leq l \leq r<n
$$

In other words, g is the maximum possible value of $f(l, r)$ for all possible subarrays of array A.
Let m be the length of the smallest subarray such that $f(l, r)=g$. Given A, find the value of g as well as the number of subarrays such that $r-l+1=m$ and $f(l, r)=g$, then print these respective answers as space-separated integers on a single line.

Input Format

The first line contains an integer, n, denoting number of elements in array A.
The second line contains n space-separated integers describing the respective values of $a_{0}, a_{1}, \ldots, a_{n-1}$.

Constraints

- $1 \leq n \leq 2 \cdot 10^{5}$
- $-40 \leq a_{i} \leq 40$

Subtasks

For the 20% of the maximum score:

- $1 \leq n \leq 2000$
- $-10 \leq a_{i} \leq 10$

For the 60% of the maximum score:

- $1 \leq n \leq 10^{5}$
- $-12 \leq a_{i} \leq 12$

Output Format

Print two space-seperated integers describing the respective values of g and the number of subarrays satisfying $r-l+1=m$ and $f(l, r)=g$.

Sample Input 0

```
3
2 31
```


Sample Output 0

```
    1 1
```


Explanation 0

The figure below shows how to calculate g :
$A=[2,3,1]$

$[l, r]$	length	All, r]	sum($(1, r)$	All possible increasing Subsequences	$\operatorname{inc}(1, r)$	$f(1, r)$ $=$ sum $(1, r)-$ inc $(1, r)$
$[0,0]$	1	$[2]$	2	$[2]$	2	$2-2=0$
$[1,1]$	1	$[3]$	3	$[3]$	3	$3-3=0$
$[2,2]$	1	$[1]$	1	$[1]$	1	$1-1=0$
$[0,1]$	2	$[2,3]$	$2+3=5$	$[2],[3],[2,3]$	$2+3=5$	$5-5=0$
$[1,2]$	2	$[3,1]$	$3+1=4$	$[3],[1]$	3	$4-3=1$
$[0,2]$	3	$[2,3,1]$	$2+3+1=$ 6	$[2],[3],[1]$ $[2,3]$	$2+3=5$	$\mathbf{6 - 5 = 1}$

$$
g=\max (0,0,0,0,1,1)=1
$$

m is the length of the smallest subarray satisfying $f(l, r)$. From the table, we can see that $m=2$. There is only one subarray of length 2 such that $f(l, r)=g=1$.

