Unique Colors

You are given an unrooted tree of n nodes numbered from 1 to n. Each node i has a color, c_{i}.
Let $d(i, j)$ be the number of different colors in the path between node i and node j. For each node i, calculate the value of sum_{i}, defined as follows:

$$
\operatorname{sum}_{i}=\sum_{j=1}^{n} d(i, j)
$$

Your task is to print the value of sum_{i} for each node $1 \leq i \leq n$.

Input Format

The first line contains a single integer, n, denoting the number of nodes.
The second line contains n space-separated integers, $c_{1}, c_{2}, \ldots, c_{n}$, where each c_{i} describes the color of node i.
Each of the $n-1$ subsequent lines contains 2 space-separated integers, a and b, defining an undirected edge between nodes a and b.

Constraints

- $1 \leq n \leq 10^{5}$
- $1 \leq c_{i} \leq 10^{5}$

Output Format

Print n lines, where the $i^{t h}$ line contains a single integer denoting sum .

Sample Input

```
5
2 3 2 3
2
2
24
1 5
```


Sample Output

```
    10
    9
    1 1
    9
    1 2
```


Explanation

The Sample Input defines the following tree:

Each sum_{i} is calculated as follows:

1. $\operatorname{sum}_{1}=d(1,1)+d(1,2)+d(1,3)+d(1,4)+d(1,5)=1+2+3+2+2=10$
2. sum $_{2}=d(2,1)+d(2,2)+d(2,3)+d(2,4)+d(2,5)=2+1+2+1+3=9$
3. sum $_{3}=d(3,1)+d(3,2)+d(3,3)+d(3,4)+d(3,5)=3+2+1+2+3=11$
4. $\operatorname{sum}_{4}=d(4,1)+d(4,2)+d(4,3)+d(4,4)+d(4,5)=2+1+2+1+3=9$
5. sum $_{5}=d(5,1)+d(5,2)+d(5,3)+d(5,4)+d(5,5)=2+3+3+3+1=12$
